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Abstract

In modern programmable systems, factors like higher component density, lower
voltage levels, and an increased number of transistors have amplified the
susceptibility of embedded systems to transient bitflip faults. These faults
can occur due to external disturbances such as radiation or electromagnetic
interference. This electromagnetic interference can be both conducted or
radiated. These soft errors often pass by unnoticed, but their consequences can
be severe since they lead to unpredictable system behavior. Specifically, two
types of errors emerge, namely corruption of data (Data Flow Errors, DFEs)
and unintended jumps in the program flow (Control Flow Errors, CFEs). Given
the adoption of such systems in safety-critical and mission-critical applications,
ensuring their reliability becomes paramount.

To mitigate the impact of bitflips, researchers have explored Software-
Implemented Hardware Fault Tolerance (SIHFT) techniques. Unlike traditional
hardware-based approaches, SIHFT aims to detect errors caused by transient
faults directly within the software. By introducing redundant instructions to
verify the program state, SIHFT techniques can identify corrupted data and
control flow anomalies at runtime. However, much of the existing research
focuses on simplified scenarios. These techniques struggle to scale up for larger,
more realistic applications, making their adoption challenging or even impossible.

We investigated the limitations of state-of-the-art SIHFT techniques when
applied to large case studies. We identified that many of the major techniques
could not be applied to real-world applications due to their reliance on a large
number of dedicated CPU registers. More specifically, instruction duplication
techniques — one of the most prominent error detection techniques in the
state-of-the-art — need these registers to store redundant values. Unfortunately,
this can cause a shortage of available registers, leading to a compilation failure
for real-world applications.
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iv ABSTRACT

To solve this issue, we propose a set of SIHFT techniques that can reliably detect
both DFEs and CFEs while merely utilizing three dedicated CPU registers.
Opposed to the classical instruction duplication approach, our techniques rely
on re-execution and checkpointing to detect bitflips. While the state-of-the-art
DFE detection techniques fail to compile for numerous of our case studies, the
techniques developed in this thesis can be implemented for all applications,
regardless of their size or complexity. The proposed techniques were rigorously
evaluated through extensive fault injection campaigns across various case studies,
showcasing their effectiveness. Comparing our techniques to existing state-of-
the-art methods, we found that they achieve a comparable error detection
ratio for both DFEs and CFEs. The novel techniques effectively cover errors
that cause unpredictable system behavior while disregarding faults with no
impact on system functionality. However, the evaluation also shows that the
re-execution-based approach can lead to considerable overhead in execution
time and program size for certain applications.

To address the high overhead, firstly, the well-known strategy of selective
implementation was used. In this approach, only a selection of the CPU
registers are protected as opposed to all of them. Secondly, the possibilities of
SIHFT extensions for the rising open-source RISC-V instruction set architecture
were explored. Due to the extendable nature of RISC-V, new possibilities
for developing optimized, reliable, and secure systems arise. As a step
toward adopting software-implemented tolerance techniques within the RISC-V
ecosystem, this thesis proposes a specialized RISC-V extension that supports
one of our re-execution-based techniques. While SIHFT techniques can be
implemented on any processor architecture, the RISC-V extension offers a
more efficient implementation, promising significantly reduced overhead without
impacting error detection rates.

In addition to the novel SIHFT techniques, we provide tool support to facilitate
the adoption of these techniques in the form of a publicly available GCC plugin
under a GPL license model. This plugin allows developers to easily apply the
proposed SIHFT techniques, as well as numerous state-of-the-art techniques
to their applications. The plugin supports multiple target architectures and is
designed to be easily extendable to provide support for other target architectures
and SIHFT techniques.

By providing new SIHFT techniques that can be applied to real-world
applications and providing the tool support to implement these techniques, this
thesis aims to make SIHFT techniques more accessible to the broader software
engineering community.



Beknopte samenvatting

Door factoren als een hogere componentendichtheid, lagere spanningsniveaus
en een groter aantal transistoren zijn moderne programmeerbare systemen
gevoeliger geworden voor bitflip-fouten. Deze fouten kunnen optreden als gevolg
van externe storingen zoals straling of elektromagnetische interferentie. De
gevolgen van deze zogeheten soft errors kunnen ernstig zijn, omdat ze leiden tot
onvoorspelbaar systeemgedrag. Concreet komen er twee soorten fouten voor,
namelijk corruptie van gegevens (Eng: Data Flow Errors, DFE’s) en onbedoelde
sprongen in de programmastroom (Eng: Control Flow Errors, CFE’s). Aangezien
dergelijke systemen veel voorkomen in veiligheids- en missiekritieke toepassingen,
is het van het allergrootste belang dat hun betrouwbaarheid wordt gegarandeerd.

Het onderzoek naar zogeheten Software-Implemented Hardware Fault Tole-
rance (SIHFT) technieken heeft als doel om de impact van deze bitflips te
beperken. In tegenstelling tot traditionele benaderingen — die focussen op het
introduceren van nieuwe hardware — streeft SIHFT ernaar fouten veroorzaakt
door soft errors direct in de software te detecteren. Door redundantie te
introduceren en extra controlevariabelen te gebruiken, kunnen SIHFT-technieken
corrupte gegevens identificeren en afwijkingen in de uitvoervolgorde van het
programma verifiëren. Veel van het bestaande onderzoek richt zich echter op
vereenvoudigde scenario’s die niet schalen naar meer realistische toepassingen.
Daardoor is de adoptie van state-of-the-art SIFHT technieken een uitdaging of
zelfs onmogelijk.

Wij onderzochten de beperkingen van de modernste SIHFT-technieken bij
toepassing op grotere, meer realistische casestudies. We stelden vast dat veel
state-of-the-art technieken niet kunnen toegepast worden op deze toepassingen,
omdat de SIHFT-technieken een groot aantal CPU-registers vereisen. Meer
specifiek vereisen instructieduplicatietechnieken — een van de meest prominente
errordetectietechnieken in de bestaande literatuur — een groot aantal registers
om de gedupliceerde toestand op te slaan. Helaas kan dit een gebrek aan
beschikbare registers veroorzaken, wat leidt tot een compilatiefout.
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vi BEKNOPTE SAMENVATTING

Om dit probleem op te lossen, introduceren wij een set van SIHFT-technieken die
zowel DFE’s als CFE’s betrouwbaar kunnen detecteren en daarvoor slechts drie
CPU-registers gebruiken. In tegenstelling tot de klassieke instructieduplicatie-
methode, baseren onze technieken zich op heruitvoering en checkpointing om
bitflips te detecteren. Waar de state-of-the-art DFE-detectietechnieken niet
kunnen compileren voor veel van onze casestudies, kunnen de technieken
die in dit proefschrift zijn ontwikkeld, geïmplementeerd worden voor alle
toepassingen, ongeacht hun grootte of complexiteit. De nieuwe technieken
werden rigoureus geëvalueerd door middel van uitgebreide foutinjectiecampagnes
voor verschillende casestudies. Door onze technieken te vergelijken met
bestaande state-of-the-art-methoden, tonen we aan dat ze een vergelijkbare
foutdetectieratio bereiken voor zowel DFE’s als CFE’s. De evaluatie toont
echter ook aan dat de op heruitvoering gebaseerde benadering kan leiden tot
aanzienlijke overhead in uitvoeringstijd en programmagrootte voor bepaalde
toepassingen.

Om de hoge overhead aan te pakken, introduceren we eerst een selectieve
implementatie van de techniek. Dit betekent in deze context dat slechts
een subset van de CPU-registers beschermd wordt. Anderzijds werden de
mogelijkheden van SIHFT-extensies voor de opkomende open-source RISC-V-
instructiesetarchitectuur onderzocht. Door de uitbreidbare aard van RISC-V
ontstaan er nieuwe mogelijkheden voor het ontwikkelen van geoptimaliseerde,
betrouwbare en veilige systemen. Dit proefschrift stelt een gespecialiseerde
RISC-V-extensie die een van onze nieuwe technieken ondersteunt voor. Hoewel
SIHFT-technieken op elke processorarchitectuur kunnen worden geïmplemen-
teerd, biedt deze RISC-V-extensie een efficiëntere implementatie, die aanzienlijk
lagere overhead belooft zonder impact te hebben op de foutdetectieratio.

Naast de nieuwe SIHFT-technieken, introduceren we ook verschillende tools om
de adoptie van deze technieken te vergemakkelijken. Dit komt onder andere in de
vorm van een openbaar beschikbare GCC-plug-in onder een GPL-licentiemodel.
Deze plug-in stelt ontwikkelaars in staat om talloze SIHFT-technieken eenvoudig
toe te passen op hun applicaties. De plug-in ondersteunt meerdere architecturen
en is ontworpen om eenvoudig uitbreidbaar te zijn om ondersteuning te bieden
voor nog niet geïmplementeerde architecturen en SIHFT-technieken.

Door de introductie van de nieuwe SIHFT-technieken die kunnen worden
toegepast op grote en complexe toepassingen en door de toolondersteuning
om deze technieken te implementeren aan te bieden, wilt dit proefschrift SIHFT-
technieken toegankelijker maken voor de bredere softwareontwikkelingsgemeen-
schap.
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Chapter 1

Introduction

1.1 Single Event Upsets

Today’s modern society relies heavily on the use of embedded systems, both
in industrial application fields and in home appliances. Microcontrollers, and
microprocessors, are now able to perform complex tasks at lightning speeds with
prolonged battery lives, driving the deployment of principles like the Internet
of Things and Industry 4.0.

An embedded system comprises hardware and software components that interact
with the physical environment via sensors and actuators to perform a specific
task. The software component can include two subcomponents: the application
and an optional (real-time) operating system. The necessity of an operating
system depends on the type of applications the embedded system needs to
run. Embedded systems without an operating system are known as bare-metal
embedded systems, where the application interacts directly with the hardware.
Designers can choose to work with a bare-metal system to eliminate the overhead
of an operating system, thereby requiring a more simple and cheaper hardware.

Embedded systems have become the core of contemporary technology, with
advancements in microelectronics technology enabling the integration of more
functionality in smaller packages. Over the past five decades, the semiconductor
industry has consistently adhered to Moore’s Law (Figure 1.1), continually
shrinking transistor sizes from approximately 10 micrometers to as small as 5
nanometers [1]. Knowing that a single silicon atom is about 0.2 nanometers in
diameter puts the scale in perspective. Meanwhile, the power consumption of
these devices has decreased, while their performance has increased. This trend
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2 INTRODUCTION

Figure 1.1: Moore’s Law: the number of transistors on a microchip doubles
approximately every two years. Data source: [2]

has enabled the development of more powerful and energy-efficient devices,
which have become ubiquitous in our daily lives.

Since embedded systems are commonly used in safety-critical and mission-
critical systems, their reliability is of utmost importance. However, the
decreasing transistor sizes and operating voltages have increased the electronics’
susceptibility to radiation and other environmental factors [3, 4]. Baumann et
al. show how radiation from alpha particles, cosmic rays, muons, and neutron-
induced 10B fission can impact electronic components and corrupt the transistor
state, causing a Single Event Upset (SEU) [3, 5, 6]. Such a radiation event is
depicted in Figure 1.2. Radiation can cause localized ionization events, either
directly or indirectly, which can disrupt internal data states.

An SEU is a type of Single Event Effect (SEE) usually appearing as transient
pulses in logic or support circuitry, or as bitflips in memory cells or registers. In
this thesis, the latter is the primary focus. SEEs are disturbances in the normal
operation of a device caused by a single energetic particle. Some types of SEEs
are hard errors (i.e. errors causing permanent damage to the device), like Single
Event Latchups (SELs) and burnouts of power MOSFETs. However, SEUs
are soft errors, meaning they are transient and thus do not cause permanent
damage to the device. Simply cycling the power of the device or rewriting
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Figure 1.2: A radiation event (fast-charged particle) can create an ionized track
in the substrate or silicon it passes through, generating electron-hole pairs.
These charges can produce a parasitic transient current that disrupt the device.
This effect can result in a transient pulse within logic circuits, creating a bitflip
in memory components.

the bit of the affected memory cell or register will remove all traces of the
original fault. This, however, does not mean that SEUs cannot cause significant
damage or disruption to a system. The effect of a single event upset can cause
wrong and unpredictable behavior in the system, which can lead to catastrophic
consequences and physical harm in safety-critical systems [7].

In 2019, E. H. Ibe et al. documented the spreading concerns in various fields of
industry related to SEEs [8]. Their results are summarized in Table 1.1. The
table shows that SEEs can cause a wide range of failures in various industries,
from the avionics industry to the automotive industry.

While the effects of single event upsets are well-documented, tracing a failure
back to a soft error is challenging due to its transient nature. A system might
behave incorrectly due to an SEU, but the affected memory cell might be
overwritten well before the system is analyzed. Moreover, if the system is
turned off and the faulty register is not written to permanent memory, the cause
of the fault is lost. This makes diagnosis even more challenging. Therefore,
it is only in rare cases – like the malfunctioning of the ADIRU (Air Data
Inertial Reference Unit) of Qantas Flight 72 in 2008 causing two uncommanded
rapid nose-down pitch events [9] – that the cause of the failure is traced back
to SEUs. This, however, does not mean that the risks of radiation-induced



4 INTRODUCTION

Table 1.1: Failure reports by terrestrial neutrons in various industries. This
shows that single event effects can cause a wide range of failures in various
industries. Adapted from [8, Table 3.3]

Field Application Failure symptom
Avionics Fly by wire Reboot
Railway GTO1/IGBT2 Out-of-service

Network
Server Data corruption/Reboot
Router Reboot/Address change
Power supply Out-of-service

Supercomputer Unrecognizable wrong calculation

Automobile

Brake by wire Non-stop/Sudden stop
Power steering Stuck/Unexpected rotation
Engine control Sudden acceleration/No operation
CAN3/LIN4 Communication error
IGBT2 Out-of-service
Pedestrian detection No pedestrian detection

1Gate Turn-Off thyristor 2Insulated Gate Bipolar Transistor
3Controller Area Network 4Local Interconnected Network

errors go unnoticed by industry experts. For example, the 2022 edition of the
IEEE International Roadmap for Devices and Systems warns of issues related
to muon-induced soft errors in the long-term (2029-2037) in its More Moore
report [10].

Bitflips in registers or memory components can also result from Electromagnetic
Interference (EMI), which can introduce charges on PCB traces and transistors,
changing their state [11, 12, 13]. This can both be conduced and radiated EMI.
Research shows that the sensitivity of a transistor to EMI and particles increase
when the transistor is subjected to higher temperatures [14].

Additionally, although this thesis focuses on unintentional upsets caused by
environmental factors, attackers can intentionally introduce bitflips to extract
critical data or bypass security protocols. Van Woudenberg et al. showed
how voltage and clock perturbation and optical fault injection methods can be
used to exploit modern microcontrollers and to bypass, among others, security
condition checks such as PIN correctness [15].

Many components of a microcontroller can be affected by these faults. Figure 1.3
represents a simplified overview of the typical components of a microcontroller.
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Figure 1.3: Simplified overview of the typical microcontroller components:
(1) the memory and peripherals, (2) the buses, and (3) the CPU core.

Three sets of components vulnerable to bitflips can be identified.

The first set of components is the memory and peripherals. Transient faults
in these components can corrupt data, instructions or interrupt signals. These
types of faults have been known to occur for decades and can effectively be
protected against by implementing Error-Correcting Code (ECC) in the memory
and peripherals. Such codes add redundancy to the stored data, enabling error
detection and error correction.

The second set of components is the many buses used to transmit the data
between the different hardware components. Data residing on the bus can be
corrupted by external disturbances. The data transmitted on the bus can again
be protected by applying ECC such as hamming codes [16].

The components within the CPU core make up the third group. Bitflips in the
register bank, arithmetic logic unit, and data interface will directly result in
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corrupted data in the register bank. These types of errors are called Data Flow
Errors (DFEs). Bitflips in the program counter will cause an illegal jump in the
program, resulting in a corrupted control flow. These errors are therefore called
Control Flow Errors (CFEs). Bitflips in the instruction interface or instruction
register can result in both types of corruption, depending on the instruction
being executed and how that instruction is affected. This thesis focuses on
disturbances in the components of the CPU core.

1.2 Soft Error Mitigation Techniques

To harden microprocessors against soft errors, countermeasures can be
implemented across multiple levels of design abstraction, including the transistor
level, circuit level, and program level [17].

Transistor-level solutions primarily depend on process technology to shield
against radiation events (like alpha and neutron strikes) and to minimize the
amount of charge that accumulates in a transistor node during such events [17].
This can, for example, be accomplished by shielding the electronics with a layer
of depleted boron and mounting them on insulating substrates, like done for
the 2020 Perseverance Mars rover [18]. These solutions are very costly and lag
several generations behind Commercial Off-The-Shelf (COTS) processors [19].
Therefore, they are only used in applications where both the level of radiation
and the cost of failure are very high (e.g. in space applications).

The circuit-level solutions largely focus on the use of redundant components to
enable detection and recovery from soft errors. Another solution on this level
is simply increasing the supply voltage or capacitance of the circuit, thereby
increasing the energy required to flip a bit [17]. While effective, these hardware-
based countermeasures also represent a high cost to implement as they need
extra components, power and space. They also lack flexibility since they cannot
be changed once the system has been deployed.

This thesis focuses on program-level mitigation techniques that make use of
software resilience techniques to detect corrupted data or control flow. These
techniques, often called Software-Implemented Hardware Fault Tolerance (SI-
HFT) techniques, are typically implemented solely on the software level by
inserting checks throughout the program to verify an error-free execution.
There are a number of reasons why SIHFT techniques could be considered over
hardware-based solutions.

Firstly, many mission- and safety-critical systems have incorporated commercial
off-the-shelf components to reduce costs and development time [20]. However,
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these components are not specifically designed, manufactured, and validated for
the deployment in such critical applications. In these cases, SIHFT techniques
can be used to mitigate the risks of transient errors. Since implementing
hardening techniques at this level does not require costly hardware changes,
they can be implemented on existing COTS systems.

Secondly, existing systems that are already deployed can be hardened by
modifying the software through a firmware update. Although for safety- and
mission-critical systems, this involves an extensive validation process, it is still
significantly more cost-effective compared to recalling a product to replace
its hardware components. The latter is often also infeasible, e.g. for space
applications where, once launched, the system cannot be physically accessed
anymore.

Thirdly, software-implemented techniques allow for a more flexible approach to
the level of protection. The level of protection can be changed by modifying
the software or can even be switched on or off at various stages in the program.
For example, a mission-critical part of the program can be enhanced through a
full protection scheme, while less critical parts can be left unprotected to save
resources or speed up execution.

Applications that could benefit from SIHFT techniques include, but are not
limited to:

• Automotive systems, where a soft error could cause a sudden acceleration
or deceleration of the vehicle;

• Industrial control systems in high radiation environments such as nuclear
power plants, where a soft error could cause a machine to operate
incorrectly, potentially causing physical harm to operators;

• Medical devices in radiated environments such as MRI scanners, where
a bitflip fault could cause the device to operate incorrectly, potentially
causing physical harm to patients and healthcare workers;

• Space applications, where a SEU could comprimize the operation of a
satellite or spacecraft, potentially causing the loss of the mission.

SIHFT techniques can be implemented in multiple ways. Many implement
redundancy by executing the same program on multiple threads or processes and
comparing the results of those threads [21, 22, 23]. Such redundancy techniques
require either an operating system or a superscalar processor. However, market
studies show that approximately 26% of the companies in the embedded systems
market solely use bare-metal devices [24]. For these systems, single-threaded
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instruction-level redundancy techniques are used. They operate by adding
instructions to the program at compile time to verify the correctness of the
program execution. This can, for example, be done by implementing signature-
checking mechanisms or duplicating variables and comparing their results.

When an error is detected by a SIHFT technique, an error handler is called. This
error handler should be defined by the application programmer and should take
appropriate action to put the system in a safe state or, if possible recover from
the error. The implementation of this error handler is application dependent
and out-of-scope for this thesis.

Although there are instruction-level redundancy techniques that are applied at
high-level code, such as C or C++ [25, 26, 27], the majority of these techniques
are implemented in low-level code, such as assembly language to ensure that
the redundancy measures added by the SIHFT technique are not removed by
compiler optimizations. This work focuses on these low-level instruction-level
redundancy techniques.

1.3 Research Objectives

Over the past decades, a wide range of SIHFT techniques have been developed,
each with its focus, advantages, and disadvantages. However, the research on
these techniques typically focuses on small toy-like problems and simplified
examples. Novel techniques are rarely tested on larger and more realistic
problems, making their effective application in real-world scenarios uncertain.
Therefore, the first objective of this thesis is to evaluate the applicability of
state-of-the-art SIHFT techniques on larger, more industrially applicable case
studies. This will provide a better understanding of the effectiveness of these
techniques in real-world scenarios and will help to identify the strengths and
weaknesses of different types of SIHFT techniques.

This research will reveal the limitations of the current SIHFT techniques and
will provide insights into the development of new techniques. The second
objective of this thesis is to develop new SIHFT techniques that address these
limitations. These new techniques will be evaluated on the same case studies
as the state-of-the-art techniques to compare their effectiveness. The aim is to
create a set of techniques that provide full protection against both control flow
errors and data flow errors. Since implementing these techniques in low-level
code is complex and error-prone, the novel techniques will be implemented in a
GCC compiler plugin [28].

Another way to improve the state-of-the-art of the SIHFT techniques is to create
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hardware support for the SIHFT techniques, thereby combining the flexibility
of software-based techniques with the speed of hardware-based techniques. For
this, the extendable RISC-V Instruction Set Architecture (ISA), which has
recently disrupted the microprocessor market, can be explored. The extendable
nature of this ISA opens the door to a range of specialized processors, tailored
to specific applications and needs. This work will show that this can be useful
for protecting against SEUs, as the ISA can be extended with instructions that
are specifically designed to support SIHFT techniques. Therefore, the third
objective of this thesis is to investigate how this can be achieved by creating
a custom RISC-V ISA extension that supports one of the developed SIHFT
techniques. This extension will be implemented on the Imperas Instruction Set
Simulator (ISS), a widely used RISC-V simulator, to evaluate the effectiveness
of SIHFT techniques supported by the RISC-V extension against the traditional
SIHFT techniques.

To summarize, the main Research Objectives (ROs) of this thesis are as follows:

RO1. Evaluate the applicability of state-of-the-art SIHFT techniques on more
industrially applicable case studies;

RO2. Develop new SIHFT techniques that address the limitations discovered
in RO1;

RO3. Investigate how a custom RISC-V extension can be created to support
SIHFT techniques.

1.4 Contributions

The main contributions of this thesis are as follows:

• The effectiveness of state-of-the-art SIHFT techniques on larger, more
realistic case studies were evaluated, providing insights into the limitations
of these techniques. This research shows that many of the State-Of-The-
Art (SOTA) techniques – specifically Data Flow Error Detection (DFED)
and hybrid techniques – cannot be applied to many case studies since
they require a large amount of CPU registers dedicated to the technique.

• Three SIHFT techniques that address the limitations of the SOTA
techniques were developed. These novel techniques were evaluated on
the same case studies as the SOTA techniques. Whereas most common
DFED and hybrid techniques focus on some form of code duplication, the
first novel technique is a re-execution-based technique called DETECTOR.
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Next, this technique was improved upon by introducing parity checking,
resulting in the P-DETECTOR technique. Finally, versions of these
techniques that can be selectively implemented were created. Various
experiments indicate that the novel techniques provide full protection
against both CFEs and DFEs, showing similar error detection capabilities
as the SOTA techniques, while only requiring three CPU registers.

• The novel SIHFT techniques were implemented in the GCC compiler plugin
framework of the M-Group research team, providing a more user-friendly
way to implement these techniques in low-level code. Using this framework,
the techniques can be easily applied to any program without the need for
manual code changes. This can aid in both further research endeavors
and the implementation of these techniques in industrial applications.

• The possibility of extending the RISC-V ISA to support SIHFT techniques
was investigated. This work shows how the extendable nature of
RISC-V allows for the creation of custom functionality to support SIHFT
techniques by creating a custom RISC-V ISA extension that supports the
P-DETECTOR technique. This extension was implemented as a custom
CPU model on the Imperas RISC-V ISS. Its effectiveness was evaluated by
comparing the implementation of the P-DETECTOR technique supported
by the RISC-V extension to the normal P-DETECTOR implementation.

1.5 Structure of the thesis

The remainder of this thesis is organized as follows. Chapter 2 provides an
overview of the state-of-the-art in the field of SIHFT techniques and shows
how these techniques have their limitations. Chapter 3 describes the tools and
methodologies used for all experiments throughout this thesis. Next, Chapter 4
presents the novel SIHFT technique, called DETECTOR, and evaluates its
effectiveness on a set of case studies. This is followed by Chapter 5, which
describes two optimizations to DETECTOR. Chapter 6 introduces the RISC-V
instruction set architecture and how its modular design is designed to support
various standard and nonstandard extensions. This is the basis for Chapter 7,
where a novel RISC-V extension to support the P-DETECTOR technique
is described. Next, Chapter 8 describes how the implementation of SIHFT
techniques can be automated using a GCC plugin, after which Chapter 9 details
how this GCC extension and the other research results can be valorized. Finally,
Chapter 10 concludes the thesis and provides directions for future research.



Chapter 2

State-Of-The-Art

As mentioned in Chapter 1, this thesis focuses on software-implemented hardware
fault tolerance techniques, which comprise data flow error detection techniques,
control flow error detection techniques, or a combination of both. This chapter
provides an overview of the state-of-the-art in control flow, data flow, and hybrid
error detection techniques in Sections 2.1 to 2.3. The chapter concludes with
Section 2.4, which dives into the limitations with the SOTA that this thesis
aims to address.

2.1 Control Flow Error Detection

2.1.1 Principles of Control Flow Error Detection

A control flow error is defined as the corruption of the execution order of
instructions. More concretely, a CFE is a violation of the Control Flow
Graph (CFG) of a program. A CFG is a directed graph that represents the
flow of control in a program. It consists of basic blocks, which are sequences of
instructions that are always executed in the same order and edges that represent
the flow of control between basic blocks. By its nature, each basic block has
one entry point and one exit point. Multiple edges can originate from one exit
point and multiple edges can terminate at one entry point.

To illustrate this, Figure 2.1a shows a program written in ARMv7-M assembly
language. Its corresponding CFG is shown in Figure 2.1b. Since instruction
0xf04 is a conditional branch instruction (cbz, compare and branch on zero),

11
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f00: mov r3, r0
f04: cbz r0, f1c
f08: movs r0, #0
f0c: subs r2, r3, #1
f10: ands r3, r2
f14: add r0, r0, #1
f18: bne f0c
f1c: bx lr

(a)

f00: mov r3, r0
f04: cbz r0, f1c

f08: movs r0, #0

f0c: subs r2, r3, #1
f10: ands r3, r2
f14: add r0, r0, #1
f18: bne f0cf1c: bx lr

(b)

Figure 2.1: The flow of control in a program can be represented in a control flow
graph: (a) shows the bit-count program of the MiBench benchmark suite [29]
in ARMv7-M assembly language and (b) shows the control flow graph of this
program.

f00: mov r3, r0
f04: cbz r0, f1c

f08: movs r0, #0

f0c: subs r2, r3, #1
f10: ands r3, r2
f14: add r0, r0, #1
f18: bne f0cf1c: bx lr

a

b

c ...

Figure 2.2: The three types of control flow errors depicted on a CFG, namely
(a) inter-block, (b) intra-block, and (c) out-of-CFG control flow errors.

the program can either jump to instruction 0xf1c or continue to instruction
0xf08. Hence, this is the end of the first basic block. Two edges start from this
exit point: one to instruction 0xf1c and one to instruction 0xf08. The same
goes for instruction 0xf18 (bne, branch if not equal), which can loop back to
instruction 0xf0c or continue to instruction 0xf1c. This creates an exit point at
instruction 0xf18 and an entry point at instructions 0xf0c. Instruction 0xf1c
is a return instruction (bx, branch and exchange), identifying the end of the
subroutine and the CFG.

During a fault-free execution, the program executes each instruction of each
basic block sequentially and follows the edges to jump between basic blocks.
Thus, a CFE is an error during which the program (a) jumps between two basic
blocks without following the correct edges, (b) jumps forwards or backward
within the same basic block, or (c) jumps outside the control flow graph. The
only exceptions to this rule are return (bx) instructions and function calls
(bl, branch with link instructions) which, by jumping to different subroutines,
can move between different control flow graphs. These so-called inter-block,
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G ← sig0

A ← 0
B ← 5
C ← 3

assert G == sig0

BB0

G ← sig1

C ← C + 1
B ← B − 1

assert G == sig1

BB1

G ← sig2

B ← B / C

assert G == sig2

BB2

...

CFE

Figure 2.3: The principle of signature monitoring, here illustrated on a control
flow graph, is a common technique to detect inter-block CFEs. An illegal jump
from BB1 to BB2 is detected by the signature assertion at the end of BB2.

intra-block, and out-of-CFG control flow errors are shown in Figure 2.2.

Specialized Control Flow Error Detection (CFED) techniques exist for both
inter-block and intra-block CFEs. Out-of-CFG CFEs cannot be targeted by
specific techniques, as they are, by definition, not part of the CFG. They can,
however, be detected by both inter-block and intra-block CFED techniques,
depending on their nature. If the out-of-CFG CFE ends in another subroutine
or program, the error can be detected by that program’s inter- or intra-block
CFED. If the error ends up in unused memory, the error could be detected by
the system’s memory protection systems. Alternatively, the unused memory
can be filled with a jump instruction to a predefined error handler to safely
handle the error. For this reason, out-of-CFG CFEs are not discussed in this
thesis.

Figure 2.3 shows the concept of signature monitoring, a common technique
to detect inter-block CFEs. Signature monitoring techniques use a signature
to verify the correctness of the control flow. Each basic block i is assigned a
signature sigi. At the start of each basic block, this signature is assigned to a
signature variable G. At specific points in the basic blocks, signature assertions
are inserted. These assertions verify that the signature variable G matches
the signature sigi of the current basic block. If this assertion fails, a CFE is
detected and an error handler is triggered. In the example in Figure 2.3, the
signature assertion is performed at the end of each basic block.
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Figure 2.3 also shows how this approach can detect a CFE. The program
execution starts at basic block 0 and moves to basic block 1. During the
execution of basic block 1, the program makes an erroneous jump to basic block
2. When the program reaches the end of basic block 2, the signature variable
G is checked against the expected signature of basic block 2 (sig2). Since G
still holds the signature of basic block 1 (sig1) this assertion fails. This triggers
an error handler, which can log the error, reset the system, or take any other
action, depending on the requirements of the system.

Apart from signature monitoring, another common technique to detect CFEs is
instruction monitoring. While signature monitoring techniques typically only
keep track of the basic block’s signature, instruction monitoring techniques
monitor each executed instruction to detect intra-flow CFEs.

2.1.2 State-Of-The-Art Control Flow Error Detection
Techniques

Over the past decades, several CFED techniques have been proposed, each
with unique characteristics and detection capabilities. What follows is a non-
exhaustive list of the most prominent CFED techniques. A summary of the
CFED techniques discussed in this section is shown in Table 2.1.

The Enhanced Control flow Checking using Assertions (ECCA) inter-
block CFE detection technique was proposed by Alkhalifa et al. in 1999 [30].
It uses three compile-time variables for each basic block, identifying the basic
block and the two successor basic blocks, as well as a run-time signature and
helper variable.

Control Flow Checking by Software Signatures (CFCSS) was proposed
by Oh et al. in 2002 [31]. The technique uses a compile-time signature and a
valid predecessor value calculated at compile-time by the XOR operation of the
current signature and the signature of the first predecessor basic block. While
CFCSS can detect illegal jumps between (inter) basic blocks, it cannot detect
wrong branch decisions.

Software Implemented Error Detection SIED was proposed by Nicolescu
et al. [32] in 2004 and uses a unique identifier for each basic block, a list of
signatures for all successor basic blocks and a value indicating the number of
instructions that should be executed in the basic block. The technique uses
a signature monitoring variable updated at the start and end of each basic
block, as well as an instruction monitoring variable that counts down after each
executed instruction to verify that the correct number of instructions has been
executed. This combination of instruction monitoring and signature monitoring
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Table 2.1: A summary of the CFED techniques discussed in this section. The
table shows which types of CFEs each technique can detect.

Technique Inter-block
CFEs

Intra-block
CFEs

Wrong branch
decisions

ECCA ✓
CFCSS ✓ ✓
SIED ✓ ✓ ✓
YACCA ✓
RSCRC ✓ ✓
SEDSR ✓
SCFC ✓ ✓
RASM ✓ ✓
RACFED ✓ ✓ ✓

enables SIED to detect both inter- and intra-block CFEs. Additionally, the
update of the signature monitoring variable can be done conditionally, enabling
the technique to also detect wrong branch decisions.

Yet Another Control flow Checking using Assertions (YACCA) is, like
the name suggests, another CFE detection technique. This technique, proposed
in 2004 by Goloubeva et al. [33], uses three to four compile-time variables for
each basic block to verify the signature both at the beginning and at the end
of each basic block. While YACCA can detect a limited number of CFEs that
do not cross the boundaries of basic blocks, it is still considered an inter-block
CFE detection technique.

The Relationship Signatures for Control Flow Checking (RSCFC)
technique is designed to detect both inter-block and intra-block CFEs. It was
proposed by Li et al. in 2007 [34] and uses three compile-time variables for
each basic block: a signature, a CFG locator and a cumulative signature. The
signature is generated by making a mask of the valid successor basic blocks.
The CFG locator indicates the position of the basic block in the CFG, using the
same type of mask. The cumulative signature is a bit sequence indicating the
number of instructions to be executed for each basic block. By using bitwise
operations on these three values, two run-time variables can be used to detect
inter-block and intra-block CFEs. The technique can, however, not detect
wrong-branch decisions.

Software Error Detection using Software Redundancy SEDSR,
proposed by Asghari et al. [35] in 2012, uses a similar approach to RSCFC,
using a compile-time signature calculated by creating a bit sequence that shows
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the valid successor basic blocks of the current basic block. However, SEDSR
only focuses on inter-block CFEs, using a single run-time variable to verify that
the current basic block is a valid successor of the previous basic block. Just like
RSCFC, SEDSR does not detect wrong branch decisions.

SEDSR was later optimized by Asghari et al. [36] in 2014 to create Software-
based Control Flow Checking SCFC. It uses the same compile-time
signature as SEDSR but uses two run-time variables to verify the signature.
This enables SCFC to also detect wrong branch decisions, enabling it to detect
more CFEs. This technique was later again improved upon in [37] by analyzing
the critical data path and by using timers to detect additional CFEs.

Random Additive Signature Monitoring RASM, proposed by Vankeirs-
bilck et al. in 2017 [38], uses two random compile-time values per basic block:
a signature and a subtraction value. A single run-time variable is then used
to verify the inter-block control flow. At the end of each basic block, the
run-time variable is incremented so that its new value equals the sum of both
compile-time variables of the successor basic block. This operation can be
executed conditionally to enable RASM to also detect wrong branch decisions.
At the start of each basic block, the variable is decremented by the subtraction
value of the current basic block, ensuring that the run-time variable equals the
signature value for error-free runs.

The final CFED technique that will be discussed is Random Additive Control
Flow Error Detection (RACFED), also proposed by Vankeirsbilck et al. in
2018 [39]. The technique is an extension to the RASM technique to detect inter-
block and intra-block CFEs. It accomplishes this by using the same compile-time
and run-time variables as RASM but updating the run-time variable at the end
of each instruction instead of at the end of each basic block. This way, the
technique remains elegantly simple, while detecting the full range of inter-block
and intra-block CFEs.

2.2 Data Flow Error Detection

2.2.1 Principles of Data Flow Error Detection

A data flow error is defined by the corruption of input, intermediate, or output
data. When approaching this from the level of the CPU, a DFE is an error that,
either directly or indirectly, causes a wrong value in a register value of the CPU.
For example, a soft error occurring in the register bank will directly cause one
of the registers to hold an incorrect value, which may lead to incorrect results in
the program. A soft error in the Arithmetic Logic Unit (ALU) of the processor,
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A ← 0
B ← 5
C ← 3

A′ ← 0
B′ ← 5
C ′ ← 3

BB0

C ← C + 1
B ← B − 1

C ′ ← C ′ + 1
B′ ← B′ − 1

BB1

B ← B / C

B′ ← B′ / C ′

assert A == A′

assert B == B′

assert C == C ′

BB2

[A == 0] [A ̸= 0]

...

DFE4

Figure 2.4: The concept of coarse-grained instruction duplication and
comparison is a common technique to detect DFEs. Each instruction in the
program is duplicated and executed on separate shadow registers. At the end
of basic block 2, the registers are compared to their shadow registers to verify
their correctness.

on the other hand, may cause the result of an operation to be incorrect, which
in turn also corrupts the output register of the ALU.

Thus, since a DFE affects the register values, DFED techniques aim to verify
that the register values are correct. This is typically done by using instruction
duplication and comparison techniques.

The concept of instruction duplication and comparison is shown in Figure 2.4.
The program is depicted in a CFG. In each basic block, all instructions
are duplicated and placed at the end of the basic block. This is called a
coarse-grained instruction duplication, as opposed to fine-grained instruction
duplication, where each instruction is duplicated immediately after the original
instruction. In the duplicated instructions, the original registers A, B, and C
are replaced by shadow registers A′, B′ and C ′. At the end of basic block 2, the
original register values are compared to the shadow register values. A mismatch
indicates a DFE and triggers an error handler.

The figure also shows how a DFE corrupting C can propagate throughout the
program. The erroneous value of C causes a wrong calculation of register B
in basic block 2. However, the shadow registers B′ and C ′ remain unaffected.
Therefore, when the assertions at the end of basic block 2 are executed, the
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DFE is detected.

2.2.2 State-Of-The-Art Data Flow Error Detection
Techniques

DFED techniques can differ significantly in their implementation, from the
location where instructions are duplicated to the location or method used to
compare the original and shadow registers. The following is a non-exhaustive list
of the most prominent DFED techniques. A summary of the DFED techniques
discussed in this section is shown in Table 2.2.

The Error Detection by Duplicated Instructions (EDDI) technique was
proposed by Oh et al. in 2002 [40]. The technique uses fine-grained duplication
and inserts assertions before branch and store instructions. This is done to
ensure that decisions based on register values are correct and that final values,
i.e. values that are written to memory, are correct. By using two distinct
memory locations for all original and duplicated memory access instructions,
almost every data manipulation or transfer instruction is duplicated. However,
this also means that the memory overhead of the protected program significantly
increases.

Oh et al. also proposed Error Detection by Diverse Data and Duplicated
Instructions (ED4I) in 2002 [41], which uses the same concepts, but puts the
assertions after each duplicated instruction. This means that a DFE is detected
as soon as possible. The technique does, however, introduce a lot of assertions,
increasing the code size of the target program.

Similarly, Instruction Level Duplication and Comparison (ILDC),
proposed by Thati et al. in 2018 [42], duplicates all instructions except branch
instructions. ILDC inserts assertions before store, branch, load, and move
instructions to maximize the error detection coverage.

In 2012, Critical Block Duplication (CBD) introduced (coarse-grained)
selective duplication, where instead of duplicating instructions in all basic
blocks, only instructions in basic blocks deemed most critical are duplicated.
This is done to reduce the overhead of the DFED technique. The definition of
what makes instructions critical is an optimization problem and varies between
different techniques. With CBD, Abdi et al. define critical basic blocks as those
with the maximum amount of fan-out edges [43]. They reason that the results
of these blocks propagate to many parts of the program, affecting a large part
of it.

Arasteh et al. proposed an alternative to find the most critical blocks in 2015,
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Table 2.2: A summary of the DFED techniques discussed in this section. The
table summarizes the properties of each DFED technique.

Technique Granularity Full/Selective Assertion placement
EDDI Fine Full Before branch and

store instructions
ED4I Fine Full After each duplicated

instruction
ILDC Fine Full Before store, branch,

load, and move instruc-
tions

CBD Coarse Selective – protect ba-
sic blocks with the max-
imum amount of fan-
out edges

At the end of the dupli-
cated basic block

GA Fine Selective – protect the
most vulnerable se-
quence of basic blocks
determined through an
iterative analysis

After each duplicated
instruction

FDSC Fine Full duplication, Selec-
tive assertion – Only
place assertions in ba-
sic blocks with more
than one predecessor

After each duplicated
instruction (if inside a
vulnerable block)

which they called a Genetic Algorithm (GA) [44]. GA tries to precisely
identify the smallest subset of basic blocks that are the most vulnerable and
error-derating. The algorithm identifies an executable subset of the basic blocks
that have a higher impact on the program results. Through various iterations,
a fitness function evaluates how vulnerable each sequence of basic blocks is.

Full Duplication and Selective Comparison (FDSC), proposed by Thati
et al. [45] in 2018, merges the advantages of full duplication and selective
duplication techniques. Using FDSC, the entire codebase of the original program
is duplicated in a fine-grained manner, but the assertions are only inserted in a
few selected critical basic blocks. In this case, critical basic blocks are those
with two or more incoming edges since these are more likely to be included in
many execution paths throughout the target algorithm.

Finally, while most techniques – including the techniques that will be discussed
in this thesis – focus on error detection and leave the error handling to the
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application developers, some techniques provide triple redundancy to introduce
error recovery. In 2006, Chang et al. propose a set of techniques: Software
Implemented Fault Tolerance with Recovery (SWIFT-R), Triple
Redundancy Using Multiplication Protection (TRUMP) and Merely
Asserting Statistically Known facts (MASK) [46]. These techniques
make three copies of the original program instructions and use majority voting
mechanisms to automatically recover from a DFE.

2.3 Hybrid Error Detection

To fully protect systems against all types of soft errors, techniques need to
protect against both CFEs and DFEs. Therefore, hybrid techniques are needed.
In the state-of-the-art, this is accomplished by combining CFED and DFED
techniques from Sections 2.1 and 2.2. Sometimes, this combination can be
optimized to somewhat limit the overhead or to increase the error detection
coverage

The following is a non-exhaustive list of the most prominent hybrid techniques.

Detecting Errors using a Software Approach (SA) was proposed by
Nicolescu et al. [27] in 2003. This technique combines coarse-grained instruction
duplication on all basic blocks for DFED with a basic signature checking for
CFED.

The Software Implemented Fault Tolerance (SWIFT) technique was
proposed by Reis et al. in 2005 [47]. This technique combines EDDI with
CFCSS and makes some optimizations to both techniques. However, in this
thesis, its optimized DFED mechanism is considered as a standalone DFED
technique, as it is still considered as the baseline for a wide range of SOTA
techniques. While EDDI uses two distinct memory locations for all original and
duplicated store instructions and duplicates all memory access instructions, the
authors of SWIFT choose to not duplicate store instructions at all. Reis et al.
state that this does not reduce the fault detection coverage, but reduces the
memory overhead of the protected program significantly.

In their discussion of RSCFC (2007), discussed in Section 2.1, Li et al. also show
that the RSCFC can be combined with a DFED technique to create a hybrid
technique called Relationship Signatures for Control Flow Checking
with Data Validation (RSCFCDV) [34]. Although the authors do not go
in much detail, they describe a coarse-grained instruction duplication technique
similar to SA. Similarly, the authors of SEDSR (2012) show that their CFED
mechanism can be combined with CBD to introduce selective DFED [35].
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Finally, near Zero silent Data Corruption (nZDC) optimizes features of
SWIFT to create a hybrid technique [48]. The technique, proposed by Didehban
et al., uses a full fine-grained instruction duplication and comparison mechanism
to detect DFEs, trying to optimize the error detection ratio while sacrificing
overhead.

To compare the novel techniques that will be discussed in this thesis, separate
techniques are used to evaluate the CFED and DFED mechanisms. This is done
to ensure that the CFE and DFE detection mechanisms of the novel techniques
are as effective as possible, as hybrid techniques are often less effective in
detecting both types of errors compared to standalone techniques.

For the control flow error detection techniques, the CFCSS and RACFED
techniques are used for the evaluation. CFCSS is one of the most prominent
CFED techniques and is used as a baseline for many other CFED techniques.
RACFED is a more recent technique and is considered to be one of the most
effective inter- and intra-block CFED techniques.

For the data flow error detection techniques, SWIFT and FDSC is used. Like
CFCSS, SWIFT is very often used as a baseline for DFED techniques. FDSC
is used because it uses a selective comparison mechanism, which is comparable
to the selective assertions that will be used in the techniques discussed in this
thesis.

2.4 Limitations of the State-Of-The-Art

While the SOTA SIHFT techniques are effective in detecting soft errors, DFEDs
techniques heavily limit the number of general-purpose registers that are
available for the compiler to use. Since these techniques require a shadow
register for each register used in the program, only half of the available general-
purpose registers can be used in the original program. Since hybrid techniques
combine DFED and CFED techniques, this limitation also applies to them. To
account for this, the protected program should be compiled with a reduced set
of registers.

Small programs, mostly used in research experiments, compile fine with a
reduced set of general-purpose registers. In these cases, the compiler is able to
cope with the reduced register set by spilling registers to memory where needed.
However, during our research, we experienced that this does not hold for more
elaborate programs. Since at least half of the available registers have to be
reserved for error detection techniques, the register allocation process of the
compiler can fail. When it does fail, the compiler explicitly mentions that this
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../application.c:77:1: error: unable to find a register to spill
}
ˆ
../application.c:77:1: error: this is the insn:

(insn 99 220 221 13 (parallel [
(set (reg:DI 237 [210])

(plus:DI (reg:DI 237 [210])
(reg:DI 210)))

(clobber (reg:CC 100 cc))
]) "../application.c":59 1 {*arm\_adddi3}

(expr\_list:REG\_DEAD (reg:DI 210)
(expr\_list:REG\_UNUSED (reg:CC 100 cc)

(nil))))

../application.c:77: confused by earlier errors, bailing out
make[1]: *** [/home/user/application/Makefile:419: application.o] Error 1

Figure 2.5: Trying to implement a SOTA DFED technique on larger, more
industrially applicable case studies can lead to register allocation errors during
the compilation process.

register spilling process has failed, as shown in Figure 2.5 by the error “unable
to find a register to spill”.

The DFED techniques discussed in Sections 2.2 and 2.3 were applied on eleven
case studies for the Cortex-M3 processor (these case studies will be discussed
in more detail in Chapter 3). This ARMv7-M processor contains 13 general-
purpose registers, excluding the stack pointer and link register. Five of the
case studies compiled fine. However, the other five case studies, including the
I/O-driven case studies, failed to compile. This major oversight in the current
state-of-the-art is the main motivation for the development of the techniques
discussed in this thesis.

2.5 Conclusion

In this chapter, the state-of-the-art techniques for software-implemented
hardware fault tolerance were explored, focussing on CFE, DFE, and hybrid
detection techniques. The methodologies used by these techniques were
discussed, showing how these can detect soft errors occurring in the program at
runtime.
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Several CFED techniques that monitor the flow of control in a program to
detect any deviations caused by faults were examined. These techniques vary
in their approaches, from using compile-time variables and runtime signatures
to instruction monitoring, each aiming to ensure that the program execution
follows the intended control flow graph.

DFED techniques, which focus on the integrity of data as it flows through
the program, were also discussed. These techniques all base themselves on
the duplication and comparison concept, differing in the granularity of the
duplication, the scope of their protection, and the location of the inserted
assertions.

Recognizing the need to protect systems comprehensively against both CFEs
and DFEs, hybrid techniques have been developed. These techniques combine
elements of the CFED and DFED techniques to offer robust protection.

Despite the advancements, the current state-of-the-art techniques have notable
limitations. A significant issue is their reliance on many shadow registers, i.e.
general purpose registers that are reserved to facilitate redundancy and can
therefore not be used in the original program anymore. This issue, which is
particularly prevalent in DFED and hybrid error detection techniques, can lead
to register allocation errors during the compilation process. This limitation is a
critical barrier to the practical implementation of these techniques in real-world
applications. Therefore, this thesis will focus on developing techniques that do
not suffer from this register availability problem.





Chapter 3

Experimental Setup

The experimental setup described in his chapter has been used and described in
the following publications: [99, 100, 101, 102]. Since publication of these papers,
the setup has been fine-tuned. Hence, this chapter reflects the latest version of
the experimental setup.

This chapter describes the experimental setup used to evaluate the techniques
presented in this thesis. First, the case studies that will be used throughout
this thesis are presented. Next, methods used to evaluate the effectiveness of
the techniques are described. This entails the classification of the fault injection
results and the two fault injection frameworks used to conduct these experiments.
Finally, the method used to evaluate the overhead of the techniques in both
execution time and program size is discussed.

3.1 Case Studies

To evaluate the techniques presented in this thesis, several case studies were
used. These case studies can be divided into two categories: data-processing
case studies and I/O-driven case studies.

3.1.1 Data-Driven Case Studies

Data-processing case studies are programs that calculate a result based on input
data. Given a specific input, the output is deterministic and invariant.
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Eight data-processing case studies were used to evaluate the techniques presented
in this thesis. For each data-processing case study, five datasets were used to
guarantee that all control flow paths were covered.

• Bit Count (BC): This algorithm counts the hamming weight, i.e., the
number of bits set to ‘1’, in a given input word. This functionality is,
amongst others, used to calculate a parity bit in communication domains
and to calculate keys in cryptographic applications [49].

• Bubble Sort (BS): This algorithm sorts a list of numbers in ascending
order using the bubble sort algorithm. Sorting algorithms like bubble sort
are used in a wide range of applications, e.g., to assign priorities or to
enable faster analysis of data [50].

• Cyclic Redundancy Check (CRC): This algorithm, mainly used to
add error detection information to data transmissions, calculates the CRC
of a given input array. This algorithm is mainly used to add error detection
information in data transmissions [51].

• Cubic solver (CU): This algorithm solves an algebraic cubic equation
ax3 +bx2 +cx+d = 0. Cubic solvers are typically used in various scientific
applications, e.g. to find the acidity of a buffer solution [52] or to model
the pressure of a gas [53].

• Dijkstra’s algorithm (DIJ): Dijkstra’s algorithm is used to find the
shortest path between two nodes in a graph. It is therefore useful for
many routing applications, e.g. in computer networks [54].

• Fast Fourier Transform (FFT): This algorithm computes the discrete
Fourier transform of a given input array. This is typically used in digital
signal processing applications, e.g. in digital recording, sampling, additive
synthesis and pitch correction software [55].

• Matrix Multiplication (MM): This algorithm multiplies two n × n
matrices. It is widely used in areas such as network theory, solving linear
systems of equations, transforming coordinate systems and population
modeling [56].

• Quicksort (QS): This algorithm sorts a list of numbers in ascending
order using the quicksort algorithm. Just like BS, it is used in a wide
range of applications. However, quicksort is generally faster than bubble
sort, operating in O(n log n) time on average, compared to bubble sort’s
O(n2) time complexity.
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These case studies were previously used by members of the KU Leuven M-Group
research group to conduct a comprehensive evaluation of SOTA techniques [57,
58], as well as to evaluate several novel techniques [38, 39, 42, 45]. The BC,
CRC, CU, DIJ, and FFT case studies are selected from the MiBench version 1.0
benchmark suite [29]. BS, MM, and QS use a custom implementation. They were
chosen because the algorithms are used in a wide range of applications within
the embedded systems domain, from digital signal processing to cryptographic
applications. These case studies have varying basic block and edge distributions,
which enables us to evaluate the techniques for different types of control flow
graphs [59]. Furthermore, they have varying complexity in terms of number and
type of instructions. This makes them suitable for evaluating the techniques on
a wide range of programs.

The data-processing case studies are executed on a simulated ARMv7-M
Cortex-M3 processor using the Imperas Instruction Set Simulator (ISS) [60].
This speeds up the evaluation process by allowing us to run the case studies at
host speeds, rather than the slower speeds of the target hardware.

3.1.2 I/O-Driven Case Studies

Apart from the eight data-processing case studies, three I/O-driven case studies
were used. While the data-processing case studies calculate a result based
on input data, the I/O-driven case studies interact with the environment by
reading input data from sensors and driving actuators to complete their task.
These case studies comprise three stations of the Festo-Didactic MPS series [61],
which combined, form the miniature factory shown in Figure 3.1.

• Distribution station (Distr): This case study uses a swiveling arm
with a vacuum gripper to take workpieces from a magazine and distribute
them to a downstream station.

• Testing station (Test): This case study tests each workpiece for faults,
discards the faulty workpieces and delivers the good workpieces to a
downstream station.

• Sorting station (Sort): This case study sorts the workpieces based on
their color (black, metallic, and red) using two color sensors.

Each case study consists of a set of sensors and actuators controlled by an NXP
LPC1768 microcontroller containing an ARMv7-M Cortex-M3 processor.
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Figure 3.1: The miniature factory used for the I/O-driven case studies. The
factory consists of three stations: the distribution station, the testing station,
and the sorting station. Each station is controlled by an NXP LPC1768
microcontroller containing an ARMv7-M Cortex-M3 processor.

3.2 Experiment Methods

To evaluate the effectiveness of the techniques presented in this thesis, their
ability to detect soft errors must be evaluated. While some researchers have
conducted radiation experiments to test the robustness of their systems [62, 63],
the use of fault injection experiments has become the standard in evaluating
the effectiveness of SIHFT techniques. This technique enables researchers to
evaluate the effectiveness of their techniques in a controlled environment while
being able to deterministically evaluate each weak spot of the system.

In computer science, fault injection is a testing technique used to observe how
computing systems behave when stressed in unusual ways. Specifically, when
evaluating SIHFT techniques, soft errors are intentionally introduced into a
system at runtime to evaluate the behavior of the system in these unexpected
conditions. This is done for the original (unprotected) case studies as a reference
and for the case studies with the SIHFT techniques implemented (protected).
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To protect the case studies with a SIHFT technique, the SIHFT GCC plugin is
used to automatically insert the required error detection mechanisms into the
code. This plugin is explored in more detail in Chapter 8.

3.2.1 Fault Injection Result Classification

In order to accurately present the effectiveness of the evaluated techniques, the
results of the fault injection experiments are classified into four categories:

• Software Detected (SWD): The faults that were detected by the
implemented SIHFT countermeasure (higher is better).

• Hardware Detected (HWD): The faults that were detected by the
several internal fault handlers of the processor, designed to detect faults
such as memory access violations.

• Silent Data Corruption (SDC): The faults that were not detected
(neither by the SIHFT technique nor by the internal fault handlers) and
induced a corrupted result. A good protection against soft errors minimizes
the amounts of faults in this category (lower is better).

• No Effect (NEF): The faults that were not detected by any measure,
but also did not affect the outcome of the program.

This enables us to not only consider the error detection ratio of the SIHFT
techniques, but also the number of remaining corruption events. This is
important because the error detection ratio is measured relative to the fault-
space of each program, but the fault-space of the unprotected programs is
not the same as that of the protected programs [64]. Moreover, safety-critical
systems aim to reduce the risk of failure, which is in this context the risk of
a corruption event. Therefore, the absence of corruption events, rather than
the error detection ratio, is the most important aspect for safety-critical and
mission-critical applications.

To conduct these fault injection experiments, two in-house Software-Implemented
Fault Injection (SWIFI) frameworks were used: a simulation-based fault
injection framework and a Hardware-In-the-Loop (HIL) based fault injection
framework.
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Figure 3.2: The simulated SWIFI framework uses the Imperas Instruction Set
Simulator to simulate a target processor, the model of which is provided by
Open Virtual Platforms (OVP). The fault injection framework injects faults
into the register file of the simulated target using the Imperas API.

3.2.2 Simulation-Based Fault Injection Framework

The simulation-based fault injection framework is a fault injection framework
designed to inject bitflip faults into the register file of a simulated target running
on the Imperas Instruction Set Simulator. It is used for the data-processing
case studies.

The framework, originally developed by Vankeirsbilck et al. [65, 66] is shown in
Figure 3.2. It uses the C++ API of Imperas to interface with the simulated
target, the model of which is provided by Open Virtual Platforms (OVP) [67].
Depending on if the evaluated technique is a CFED, DFED, or hybrid technique,
CFEs, DFEs, or both are injected into the target.
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Injecting Control Flow Errors

The control flow error injection process used in the simulation-based fault
injection framework was originally proposed by Vankeirsbilck as the extended
CFE injection process [65].

The process starts by evaluating the control flow graph of the target program
based on its disassembled binary. Using this CFG, the process evaluates all
possible program counter corruptions for each instruction in the program using
a single (or multiple, if so desired) bitflip fault. This results in four possible
illegal jumps:

• Inter-block CFEs

• Intra-block CFEs

• Out-of-CFG CFEs

• Misaligned addresses

Since misaligned addresses will always result in a processor error, they can
be excluded from the fault injection process. Additionally, as mentioned in
Chapter 2, out-of-CFG CFEs can also be discarded. This creates a hash map
of all possible inter-block and intra-block CFEs for each instruction in the
program.

After this analysis step, the framework executes the program x steps, with x
starting at 0. The program counter at that location is then read to obtain the
address of the current instruction. Using this address as the key, an inter- or
intra-block CFE is selected from the hash map generated in the analysis step.

Next, the program counter is rewritten to the selected CFE address and the
program is resumed. When the program finishes (or after a timeout is exceeded),
the outcome of the corrupted execution is evaluated and the result is saved.

Finally, the fault injection process resets the target and follows the same
procedure, gradually going through all possible inter- or inter-block CFEs for
the selected instruction. When all possible CFEs for the current step have been
injected, x is incremented and the same steps are repeated for the next step of
the program. This is repeated until the end of the program is reached.

By going through the full program and injecting all possible n-bit CFEs for each
program instruction, the framework ensures complete coverage of all effective
CFEs in the program.
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Figure 3.3: The flow and different error handlers of a data-processing case study
used for the simulation-based fault injection framework. By monitoring the
various error handlers, the framework can classify the outcome of each fault
injection.

Injecting Data Flow Errors

The data flow error injection process used in the simulated SWIFI framework
works similarly to the CFE injection process. First, during the analysis step,
the framework determines which registers are used by each instruction in the
program. This is again placed in a hash map, with the instruction address as
the key and the registers used by the instruction as the value. For each step (x)
in the program, the framework injects all possible n-bit DFEs for each register
used by the instruction at that step.

Classifying the Fault Injection Results

To determine the outcome of each fault injection, the data-processing case
studies include a verification step at the end of their program. This is shown in
Figure 3.3. This verification function is used to verify the correctness of the
calculated result.

If the result is incorrect, the function will branch to the wrong result handler,
the location of which is known by the fault injection framework. The framework
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will detect this and classify the fault as a silent data corruption. If the result
is correct, the program will simply exit, which will also be detected by the
framework, classifying the fault as a no effect fault. The framework will also
classify the fault as a silent data corruption if the program executes longer than
a predetermined timeout.

Finally, the locations of the hard fault handler and SIHFT error handler are
also known by the framework, enabling it to classify the fault as a hardware
detected or software detected fault if the program ends up in one of these error
handlers.

3.2.3 Hardware-In-The-Loop Based Fault Injection
Framework

While the simulation-based fault injection framework uses a simulated target, the
hardware-in-the-loop-based fault injection framework uses the on-chip debugger
of a physical microcontroller to inject bitflips into the target.

This framework is used for the I/O-driven case studies. These case studies
interact with the environment using sensors and actuators. While it would
theoretically be possible to use the system in a real environment – i.e., the
Festo-Didactic MPS series stations – during the fault injection experiments,
this would be impractical.

Firstly, the injected soft errors cause the system to behave in unexpected ways,
which could lead to damage to the hardware components. Secondly, an injected
fault could leave the system in an unusual state, requiring manual intervention
to reset the system. For example, a workpiece could be left on a conveyor
belt, requiring it to be manually removed before the next fault injection can
be performed. Thirdly, the actuators of the factory are slow, taking seconds to
move from one position to another. This would make the fault injection process
very slow.

Therefore, the environment of the I/O-driven case studies is simulated using a
HIL simulator. This is shown in Figure 3.4. The HIL simulator receives the
actuator signals of the Device Under Test (DUT) and dynamically simulates
the sensors based on these actuator signals. This creates a closed-loop system
where the HIL simulator imitates the real-world environment of the DUT.

For each injected fault, the HIL simulator runs through several scenarios to
ensure that all possible control flow paths are covered. For example, in the
testing station, both a good and a faulty workpiece will be simulated to ensure
that the DUT is evaluated for both scenarios.
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Figure 3.4: The hardware-in-the-loop-based fault injector injects faults into the
Device Under Test (DUT) via the on-chip debugger. The environment of the
DUT is simulated using the HIL simulator. The HIL simulator also validates
the output of the DUT and sends the report to the fault injector.

The HIL simulator operates in virtual time, making the execution of the
case studies magnitudes faster than operating in real time. However, the
fault injection process is still slower than the simulation-based fault injection
framework. This is due to the slower speeds of the physical targets and the
different scenarios being simulated for each fault injection. Therefore, this
framework uses a random fault injection process rather than the exhaustive
fault injection process used in the simulation-based fault injection framework.
While this means that not all possible faults are injected, it does show a general
image of the effectiveness of the tested SIHFT technique.

The random fault injection process halts the program at a random location
throughout the program under test. Next, it injects a fault in the program
counter or in one of the registers used by that instruction, depending on the
type of fault being injected.

Apart from simulating the environment of the DUT, the HIL simulator also
validates the output of the DUT. Since the HIL simulator has an accurate
simulation model of the environment, it can determine if the operation of the
DUT is within the expected bounds. If it is not, the HIL simulator will send a
report to the fault injector, which will classify the fault as an SDC. This will
also happen if the HIL simulator does not receive a response from the DUT
within a predetermined timeout, which indicates that the DUT is in a stalled
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state.

The fault injector detects errors caught by the internal fault handlers (HWD)
and SIHFT technique (SDC) by setting breakpoints in their subroutines. If the
program does not halt in one of these breakpoints and the HIL simulator does
not report an error, the fault is classified as an NEF fault.

3.3 Overhead Analysis

Apart from evaluating the effectiveness of the SIHFT techniques, the overhead
they introduce must also be measured. This overhead comes in two forms: Code
Size Overhead (CSO) and Execution Time Overhead (ETO).

The code size overhead is determined by the number of instructions in the
program before (Iunprotected) and after (Iprotected) the implementation of the
SIHFT technique, which can be obtained by analyzing the disassembled binary.

CSO = Iprotected

Iunprotected
(3.1)

Similarly, the execution time overhead is determined by the time it takes for the
program to execute before (tunprotected) and after (tprotected) the implementation
of the SIHFT technique.

ETO = tprotected

tunprotected
(3.2)

Since the Imperas ISS is not a cycle-accurate simulator, physical hardware is
used to evaluate the ETO of the SIHFT techniques for both the data-processing
and I/O-driven case studies. This is done by utilizing the onboard hardware
timer of the NXP LPC1768 microcontroller to measure the time it takes for
the data-processing case studies to calculate the result or the time it takes to
process one workpiece in the I/O-driven case studies.

3.4 Conclusion

In this chapter, the selected case studies, fault injection setup, and method
for evaluating the overhead of the SIHFT techniques were presented. Eight
data-processing case studies and three I/O-driven case studies were selected
to evaluate the effectiveness of the techniques in both a data-processing and
I/O-driven environment.



36 EXPERIMENTAL SETUP

To evaluate the effectiveness of the SIHFT techniques, inter-block CFE, intra-
block CFE, and DFE fault injections can be performed on these case studies
using one of two fault injection frameworks. The simulation-based fault injection
framework uses the Imperas ISS to inject faults into the data-processing case
studies, while the HIL-based fault injection framework uses the on-chip debugger
of a physical target and a hardware-in-the-loop simulator to inject faults into
the I/O-driven case studies.

The evaluation of the SIHFT techniques takes both the results of the fault
injection and the overhead analysis into account. More specifically, the number
of corrupted results (SDC) should be minimized for a protected case study,
which normally correlates to a higher error detection ratio. Meanwhile, the
overhead of both the code size and execution time should be kept as low as
possible.



Chapter 4

Soft Error Detection Through
Low-level Re-execution

The content of this chapter has been published in [100]. Since publication of this
paper, the results have been updated to reflect the latest version of the technique.
Hence, this chapter reflects the latest version of the technique.

In this chapter, the re-execution-based DETECTOR technique is presented.
First, the core concepts of DETECTOR are presented in Section 4.1. Next,
Section 4.2 explains how these concepts can be used to implement the
DETECTOR technique. The chapter concludes with Section 4.3, in which
DETECTOR is evaluated using the fault injection experiments and overhead
measurements as discussed in Chapter 3.

4.1 Core Concepts

As mentioned in Section 2.4, SOTA DFE and hybrid detection techniques
suffer from limited implementation possibilities due to the need for many
shadow registers. To overcome this limitation, DETECTOR was developed.
DETECTOR stands for Soft Error Detection Through Low-level Re-execution.
Instead of adding redundancy by using instruction duplication, DETECTOR
adds redundancy through re-execution. This eliminates the need for a shadow
register for each register in the processor.

The general idea of DETECTOR is to back up the program state and execute
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the program until it reaches a vulnerable section. Once such a vulnerable section
is reached, DETECTOR temporarily stores the currently calculated values in
memory, reloads the original values, and re-executes the instructions leading up
to the vulnerable section. After the re-execution, the values of both cycles are
compared to determine if a soft error occurred. If not, the program continues
executing until a new vulnerable section is reached or until the complete program
has been executed.

4.1.1 Vulnerable Sections

In a compiled program, registers are used to hold temporary values for computing.
Once a final value is calculated, these register values are written to memory.
This means that a corrupted register value does not immediately result in
corrupted program results. Only when a corrupted value is written to memory
or to an I/O device, can it manifest in a corrupted program output. Therefore,
DETECTOR defines vulnerable instructions.

A Vulnerable Instruction is an instruction whose execution may cause the
consolidation of the error in a silent data corruption. One or more consecutive
vulnerable instructions make one vulnerable section. To avoid a corrupted
program output, the register values must be correct when a vulnerable section
is executed.

For the purposes of this work, three types of instructions are considered
vulnerable instructions: memory write instructions, subroutine calls, and
return instructions. Memory write instructions are considered vulnerable since
writing to memory can result in a corrupted output as these values could
be the result of a computation. Since the Cortex-M3 processor used for the
experiments contains memory-mapped I/O, I/O operations are also covered by
this definition. Subroutine calles are considered vulnerable instructions since
the called subroutines need correct argument values to execute correctly. Return
instructions are considered vulnerable instructions, as the register values should
be correct when the function returns.

Finally, if a vulnerable instruction is executed conditionally, the compare
instruction on which that instruction relies is also included in the vulnerable
section. This is because this compare instruction sets the necessary flags for the
conditional execution of the vulnerable instruction. This detail will be expanded
upon in Section 4.2.

The remainder of the original program is called the protected sections. These are
the parts of the program that will be re-executed before entering the vulnerable
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Algorithm 4.1 The DETECTOR operations performed during a checkpoint.
1: G← sigi

2: S1.pushAll (registers)
3: checkpointLabeli :

sections. Thus, any program consists of an alternation between protected and
vulnerable sections.

4.1.2 Checkpoints and Re-execution points

At the end of a protected code section, DETECTOR inserts a re-execution
point. At the start of each protected code section, it inserts a checkpoint.
The mechanisms of DETECTOR enable a program to be re-executed between
checkpoints and re-execution points.

The re-execution flow of DETECTOR is shown in Figure 4.1. When the program
reaches a re-execution point, the current state of the register values is backed
up. Next, the register values from the last reached checkpoint are restored and
the program re-executes starting from that checkpoint. When the re-execution
point is reached again, the register values of both executions are compared. If
no corruption has occurred, the register values of both executions should be
identical.

Operations of the Checkpoints

A checkpoint comprises three operations, shown in Algorithm 4.1. Each
checkpoint is assigned a unique random nonzero compile-time signature sigi.
A value at a hamming distance greater than one from zero should be used to
avoid that G becomes zero after a single bitflip. First, this signature is stored
in a run-time variable G variable. Next, the register values are pushed on a
shadow stack in memory. The variable S1 represents the stack pointer to this
shadow stack. Finally, a checkpoint label (checkpointLabeli) is added at the
end of the checkpoint. This checkpoint represents the start of the protected
section, which is entered after performing the operations of the checkpoint.

Operations of the Re-execution Points

The operations performed during the re-execution point are shown in Algo-
rithm 4.2. Since the checkpoint sets the signature variable G to a nonzero
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Create checkpoint A

Execute protected section A

Reload checkpoint A

Save the program state

Compare program state to saved program state

Call the error handler

Execute vulnerable section A

Create checkpoint B

. . .

[else]

[protected section A executed twice]
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[program state agrees with saved program state]
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Figure 4.1: UML activity diagram representing the flow of a program protected
with DETECTOR. The protected section — the code between the checkpoint
and a re-execution point — is re-executed. Next, the result of executions are
compared to verify an error-free execution, after which the vulnerable section is
executed.
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Algorithm 4.2 The DETECTOR operations performed during a re-execution
point.

1: if G ̸= 0 then
2: S2.pushAll(registers)
3: registers← S1.popAll()
4: for all sigi ∈ sources do
5: if G = sigi then
6: G← 0
7: goto checkpointLabeli
8: else
9: for all register ∈ registers do

10: temp← S2.pop()
11: if temp ̸= register then
12: errorHandler()

value, operations 1 through 7 are performed. First, all registers are pushed
on a second shadow stack using a second shadow stack pointer S2. Next, the
original register values are restored by popping them from the first shadow stack.
Then, based on the value of the signature register G (line 5), the program will
jump back to the correct checkpoint label checkpointLabeli in line 7. Before
this jump, the signature register G is cleared in line 6 to mark the start of the
second execution. From there, the protected section is re-executed. Since the
same register values are used, a fault-free run should follow the same path as
the first execution.

When the program reaches the re-execution point again, the signature value is
zero and thus, Algorithm 4.2 executes the comparison phase in lines 8 through 12.
All registers are individually popped from the second shadow stack and compared
to their current register value. A mismatch causes the error handler to be called.
Only if all the values match can the program continue into the vulnerable
section.

Note that DETECTOR does not re-execute the vulnerable section itself and
thus will not detect transient faults happening within the vulnerable section. It
safeguards the correct execution of the protected section before the vulnerable
section.
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BB0: cmp r1, #0
ble BB7

BB1: push {r4, r7}
subs r7, r1, #1

BB2: cbz r7, BB5BB7
*:bx lr

BB3: mov r3, r0
adds r4, r7, r0

BB4: ldrb r2, [r3, #0]
ldrb r1, [r3, #1]!

V S4: cmp r2, r1
itt hi
strbhi r1, [r3, #-1]
strbhi r2, [r3, #0]

cmp r3, r4
bne BB4

BB5: adds r7, #42. . .
bcs BB2

BB6: pop {r4, r7}
V S6: bx lr

Labels:
BBi start of a basic block
V Si start of a vulnerable section (*BB7 = V S7)

Figure 4.2: The control flow graph of the bubble sort algorithm in ARMv7-M
assembly. The vulnerable sections are colored gray.

4.2 Implementation

To explain the low-level implementation of DETECTOR, an example of the
bubble sort algorithm will be used. Figure 4.2 shows the CFG of the algorithm
in the ARMv7-M assembly language. The vulnerable sections are colored gray.
In this example, there are only conditional store instructions (strbhi) and
return instructions (bx). Notice the vulnerable section in basic block 4 (BB4).
Here, the compare (cmp r2, r1) and if-then (itt hi) instructions are also part
of the vulnerable section, as they are part of the conditional execution of the
store instruction. If not included in the vulnerable sections, the condition flags
would be disturbed by the added instructions in the re-execution points.

The implementation of DETECTOR on the bubble sort algorithm is shown
in Figure 4.3. A first dedicated register S1 is used to point to the first shadow
stack. At the beginning of the program, the first checkpoint is inserted. All the
values of the general purpose registers, the stack pointer, and the link register
are pushed to the first shadow stack with the instruction stmdb. However, the
ARM assembler does not allow the use of the stack pointer in the register list.
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CP0
*: mov G, sp

stmdb S1!, {r0 . . . lr}
mov G, sig0

PS0: cmp r1, #0
ble RE7

*
BB1: push {r4, r7}

subs r7, r1, #1

RE7
*: cmp G, #0

beq RE7B

RE7A: mov G, sp
stmdb S2!, {r0 . . . lr}
ldmia S1!, {r0 . . . lr}
mov sp, G
mov G, #0
b PS0

RE7B : bl compare
mov lr, G

V S7: bx lr

BB2: cbz r7, BB5

BB3: mov r3, r0
adds r4, r7, r0

BB4: ldrb r2, [r3, #0]
ldrb r1, [r3, #1]!

RE4: cmp G, #0
beq RE4B

RE4A: cmp G, sig0
mov G, sp
stmdb S2!, {r0 . . . lr}
ldmia S1!, {r0 . . . lr}
mov sp, G
mov G, #0
beq PS0

bne PS4

RE4B : bl compare
mov lr, G

V S4: cmp r2, r1
itt hi
strbhi r1, [r3, #-1]
strbhi r2, [r3, #0]

CP4: mov G, sp
stmdb S1!, {r0 . . . lr}
mov G, sig4

PS4: cmp r3, r4
bne BB4

BB5: adds r7, r7, #4294. . .
bcs BB2

BB6: pop {r4, r7}
RE6: cmp G, #0

beq RE6B

RE6A: cmp G, sig0
mov G, sp
stmdb S2!, {r0 . . . lr}
ldmia S1!, {r0 . . . lr}
mov sp, G
mov G, #0
beq PS0

bne PS4

RE6B : bl compare
mov lr, G

V S6: bx lr

if G̸=0 then

Compare G to sig0

S2.pushAll(registers)

registers←S1.popAll()

G←0

if G=sig0 then goto PS0

else goto PS4

else compare()

S1.pushAll(registers)

G←sig4

Labels:
BBi start of a basic block (*CP0 = BB0, RE7 = BB7)
V Si start of a vulnerable section
PSi start of a protected section
CPi start of a checkpoint
REi start of a re-execution point
REiA part of the re-execution point executed after the first execution of PSi

REiB part of the re-execution point executed after the second execution of PSi

Figure 4.3: The DETECTOR technique implemented on the bubble sort
algorithm in ARMv7-M assembly.
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Hence, a different register is used to temporarily hold the stack pointer, which
can be pushed to the stack pointer instead. For the purposes of this thesis, this
register will be called G. This can be seen in Figure 4.3 at label BB0.

mov G, sp
stmdb S1!, {r0, r1, r2, r3 ... r12 , G, lr}

The opposite can later be done to pop the registers and restore the stack pointer
using the ldmia instruction (e.g. at label RE7A).

ldmia S1!, {r0, r1, r2, r3 ... r12 , G, lr}
mov sp, G

Section 4.1.2 described how a signature variable is used to determine whether
the program is in its first or second execution stage. Register G can again be
used to fulfill this purpose. For the first execution, G is initialized with a uniqe
nonzero value sig0, as illustrated at the end of the checkpoint in BB0. After
executing the code until the vulnerable section, the value of G is checked, as
shown in label BB7. Since the register will have a nonzero value sig0 after
the first execution, the conditional branch beq RE7B will not be taken. The
program will simly continue to RE7A.

At label RE7A, the register values are pushed to the second shadow stack and
the original values are popped from the first shadow stack. Register S2 is used
to hold a pointer to the second shadow stack.

mov G, sp
stmdb S2!, {r0, r1, r2, r3 ... r12 , G, lr}
ldmia S1!, {r0, r1, r2, r3 ... r12 , G, lr}
mov sp, G

The first execution concludes by setting the signature register G to zero, which
marks the start of the second execution, before jumping back to the start of
the protected section.

Since processes often take different paths through their CFG, it is necessary to
keep track of which checkpoint to use when starting a re-execution. This is done
using the unique signature value of each checkpoint. By checking the value of G,
the technique knows to which instruction it should jump to re-execute a part of
the code. This is the function of the additional instructions in the re-execution
points at labels RE4A and RE6A.

After the re-execution of the protected section, G is again compared to zero
at label BB7. This time, G is indeed zero and thus, the conditional branch
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compare:

CMPr0: ldr G, [S2],#4 @ r0
cmp r0, G
bne ERR

. . .

CMPr12: ldr G, [S2],#4 @ r12
cmp r12, G
bne ERR

CMPsp: ldr G, [S2],#4 @ G (=sp)
cmp sp, G
bne ERR

RET : ldr G, [S2],#4 @ lr
bx lr

ERR: bl errorHandler

Figure 4.4: The compare subroutine used by the DETECTOR technique.

to RE7B taken. This means that the compare function is called (bl). The
implementation of compare is shown in Figure 4.4. In this function, the values
of the first execution are popped one by one from the second shadow stack and
temporarily stored in G, after which they are compared with their respective
registers. If a mismatch occurs, an error is detected and the program branches
to the error handler at label ERR.

When the compare function is called with the instruction bl compare, the link
register lr will be loaded with the address of the instruction after the function
call (instruction mov lr, G in Figure 4.3 in this case). By doing this, the
program can jump back to the address stored in the link register when the
function returns (bx lr in Figure 4.4). However, this implies that the link
register value of the original program has been lost. To recover this register, the
value of lr is popped to register G at the end of the compare function (label RET
in Figure 4.4). G can then be used to restore the original value of lr at the end
of the re-execution point. This, however, does mean that DETECTOR cannot
detect corruption of the link register since its value is never verified.

ldr G, [S2], #4 @ lr
bx lr

mov G, lr



46 SOFT ERROR DETECTION THROUGH LOW-LEVEL RE-EXECUTION

Finally, the vulnerable section of the original code can be executed. If the
vulnerable section is an exit section (i.e. it contains a return statement bx lr
like in V S6 and V S7), the function ends, and no further steps have to be taken.
If it does not, a new checkpoint is inserted like before: push the current registers
to the first shadow stack and mark the new checkpoint with a nonzero compile
time signature value sig4 in G (label CP4).

While in this explanation, the registers G, S1, and S2 are used to refer to the
registers that DETECTOR uses for its operation, in reality, these registers are
to be selected from the available general-purpose registers of the CPU. As with
all SIHFT techniques, these registers should be reserved for the error detection
technique and should not be used for other purposes in the protected program
areas.

4.3 Evaluation

In order to situate the error detection capabilities of DETECTOR within
the current SOTA, its performance is compared to both CFED and DFED
techniques separately. For CFE detection, DETECTOR is compared against
CFCSS [31] and RACFED [39]. For DFE detection, DETECTOR is compared
against the DFED of SWIFT [47] and FDSC [45].

4.3.1 Register Availability

As mentioned in Chapter 2 the state-of-the-art techniques for DFE detection
require many registers to be reserved for the shadow registers, sometimes causing
the compilation to fail due to a lack of available registers. This happened with
six of the eleven case studies used in this evaluation, as shown in Table 4.1.
Therefore, the results of the SWIFT and FDSC techniques are not available
for the CU, DIJ, and FFT data-processing case studies and for the Distr, Test,
and Sort I/O-driven case studies.

Since DETECTOR only uses three registers, it does not suffer from this
limitation. This enables DETECTOR to be used in all case studies, even
though it is capable of detecting both CFEs and DFEs.
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Table 4.1: Overview of which case studies do (✓) and do not (✗) compile when
each tested SIHFT technique is applied.

Case study Techniques
CFCSS RACFED SWIFT FDSC DETECTOR

Data-processing case studies
BC ✓ ✓ ✓ ✓ ✓
BS ✓ ✓ ✓ ✓ ✓
CRC ✓ ✓ ✓ ✓ ✓
CU ✓ ✓ ✗ ✗ ✓
DIJ ✓ ✓ ✗ ✗ ✓
FFT ✓ ✓ ✗ ✗ ✓
MM ✓ ✓ ✓ ✓ ✓
QS ✓ ✓ ✓ ✓ ✓

I/O-driven case studies
Distr ✓ ✓ ✗ ✗ ✓
Test ✓ ✓ ✗ ✗ ✓
Sort ✓ ✓ ✗ ✗ ✓

4.3.2 Fault Injection Results for the Data-Processing Case
Studies

Single-bit fault injection campaigns were performed on the data-processing case
studies discussed in Chapter 3 to evaluate the effectiveness of the DETECTOR
technique. In the following sections, a summary of the results will be discussed to
show an overview of the performance of the DETECTOR technique. An overview
of the details of all fault injection campaigns can be found in Appendix A.

The results of the CFE fault injection campaign are shown in Figure 4.5.
DETECTOR detects 59.3% to 94.8% of the injected CFEs, with an average of
69.6%. However, as mentioned in Chapter 3, the reduction in the number of
silent data corruptions should also be taken into account. The data shows that
the CFEs resulting in an SDC decrease from averagely 54.6% for unprotected
case studies to 5.7% for case studies protected with DETECTOR.

Looking at the data, it is clear that DETECTOR outperforms CFCSS on all
levels. CFCSS has an average error detection ratio of 46.2% and causes 12.0% of
CFEs to classify as an SDC. Comparing the results to RACFED, DETECTOR
averagely shows a lower error detection ratio, with RACFED averaging 79.7%
detected errors. RACFED outperforms DETECTOR on seven of the eight case
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Figure 4.5: Boxplots of the CFE single-bit fault injection results performed
on the data-processing case studies protected with CFCSS, RACFED, and
DETECTOR on the ARMv7-M ISA, showing the error detection ratio and SDC
ratio.
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Figure 4.6: Boxplots of the DFE single-bit fault injection results performed
on the data-processing case studies protected with SWIFT, FDSC, and
DETECTOR on the ARMv7-M ISA, showing the error detection ratio and SDC
ratio.

studies. Similarly, RACFED also shows a lower SDC percentage in six of the
eight case studies, with DETECTOR only showing better results for the Bubble
Sort (BS) and Cyclic Redundancy Check (CRC) case studies.

When analyzing the DFE fault injection results in Figure 4.6, a significantly
lower detection ratio can be seen: 37.7% to 59.5% with an average of 41.8%.
However, the SDC reduction sheds a different light, with an SDC reduction
from averagely 38.7% on unprotected code to 4.7% on code protected with
DETECTOR. This indicates that DETECTOR prioritizes errors that cause
a corrupted output, while errors that have no effect are masked more often.
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The choice to only verify the register values before the vulnerable section, as
opposed to before every branch and store instruction, appears to be the cause
of this behavior.

To compare DETECTOR to SWIFT and FDSC, only the BC, BS, CRC, MM,
and QS case studies should be considered since these are the only case studies
where all three techniques can be applied. SWIFT outperforms DETECTOR
when it comes to error detection ratio, with an average of 60.2% detected
errors, compared to 47.1% for DETECTOR. Only for the CRC case study does
DETECTOR outperform SWIFT when it comes to the error detection ratio.
The SDC reduction is on average also better for SWIFT. The SDC ratio of
49.0% is reduced to 3.4% when using SWIFT, compared to 4.7 when using
DETECTOR. Here, DETECTOR scores better for two of the five case studies.
A similar story can be told when comparing DETECTOR to FDSC, having
an error detection ratio of 48.3%. However, FDSC’s average SDC ratio is only
8.5% on average due to its poor performance on the BC case study.

4.3.3 Fault Injection Results for the I/O-Driven Case Studies

Using the HIL-based fault injection method described in Chapter 3, CFE and
DFE fault injections were performed on the three I/O-driven case studies.

The results of the CFE fault injection campaigns are shown in Figure 4.7. These
show that DETECTOR, while detecting on average 38.5% of the injected CFEs,
does not reduce, but rather increase the SDC ratio of two of the three case
studies. This result is in stark contrast to the data-processing case studies,
where DETECTOR was able to reduce the SDC ratio significantly. Meanwhile,
classic CFE detection techniques like CFCSS and RACFED are able to detect
a large portion of the injected CFEs, showing that this issue is specific to the
approach of DETECTOR.

To gain an insight into this phenomenon, the CFE fault injection results were
analyzed. Each CFE can jump from and to:

• checkpoints (added by DETECTOR after each vulnerable section and at
the start of the function),

• vulnerable sections,

• re-execution points (added by DETECTOR before each vulnerable
section),

• other parts of the code (i.e. instructions not added by DETECTOR and
not part of a vulnerable section).
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Figure 4.7: The results of the single-bit CFE fault injection campaigns on the
I/O-driven case studies protected with CFCSS, RACFED, and DETECTOR
on the ARMv7-M ISA.

Table 4.2: The average SDC ratio of the CFEs injected in the I/O-driven case
studies, classified based on the source (from) and destination (to) location of
the injected fault.

from
to checkpoint vulnerable

section
re-execution

point
other

checkpoint 54% 22% 39% 46%

vulnerable
section 66% 31% 60% 78%

re-execution
point 54% 16% 28% 31%

other 49% 20% 18% 12%

Each CFE was classified based on the source and destination location of the
injected fault and for each of these classes, the SDC ratio was calculated,
resulting in the matrix shown in Table 4.2.

The results show that most SDC results are caused by CFEs that jump from a
vulnerable section to a non-related part of the code. Since a vulnerable section is
not protected by DETECTOR, this is expected. However, the results also show
that DETECTOR is not able to detect many CFEs that jump to a checkpoint.
This is explained by Figure 4.8.
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A

regsA1 == regsA2

vulnerable section A

checkpoint A

B

regsB1′ == regsB2′

. . .

first execution second execution
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1′ regsB
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Figure 4.8: A CFE that jumps to a checkpoint can often remain uncaught by
DETECTOR.
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Figure 4.9: The results of the single-bit DFE fault injection campaigns on the
I/O-driven case studies protected with DETECTOR on the ARMv7-M ISA.
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Figure 4.10: Boxplots showing the Code Size Overhead (CSO) and Execution
Time Overhead (ETO) of SWIFT, FDSC, CFCSS, RACFED, and DETECTOR.
The CSO is evaluated over all case studies on the Cortex-M3 processor. The
ETO is only evaluated for the data-processing case studies since the ETO for
the I/O-driven case studies is negligible.

When the comparison step of DETECTOR is skipped by an erroneous jump,
there is a large chance that the error will remain undetected. In Figure 4.8, an
erroneous jump to the checkpoint occurs during the second execution of the A
block. The remainder of the program is thus executed with corrupted registers
regsB′

1
. Since the next B block is executed twice with these corrupted registers,

the comparison step after these two executions does not catch the error. Due
to the high number of vulnerable sections – and with that, the high number
of checkpoints – in the I/O-driven case studies, this issue is more prevalent in
these case studies than in the data-processing case studies.

The results of the DFE fault injection campaigns are shown in Figure 4.9. Here,
a small reduction in the SDC ratio is observed, from an average of 6.9% on
unprotected code to 6.0% on code protected with DETECTOR.

4.3.4 Overhead Evaluation

Adding any SIHFT technique increases the code size and execution time. These
overhead types were measured for all case studies. The results of the overhead
measurements are shown in Figure 4.10.

As is to be expected for a technique that employs re-execution, the execution
time overhead of DETECTOR is significant. For most case studies, the overhead
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of DETECTOR is higher than all SOTA techniques. This can be attributed to
several factors. Firstly, with DETECTOR, every instruction of the protected
code is re-executed. This already doubles the execution time. Secondly,
DETECTOR pushes and pops to and from shadow stacks in memory regularly.
This does not come cheap, as this can cause a pipeline stall, where the pipeline
in a CPU is temporarily halted or delayed due to a data dependency. This
further increases the execution time overhead [68]. Finally, the instructions
in each checkpoint and re-execution point also add up, further increasing the
ETO.

These issues are even more pronounced when vulnerable sections reside in a hot
loop, which is the case for the BS, MM, and QS case studies, resulting in very
high ETO numbers for these case studies.

The ETO of the I/O-driven case studies is ×1 (i.e., the execution time is the
same as the original program) for all techniques (these ETO values are excluded
from the boxplot in Figure 4.10). There is no measurable difference in execution
time between the unprotected code and the code protected by any technique.
This is because these programs spend a large percentage of their first execution
waiting for physical actuators to move and sensors to trigger. The time spent
waiting makes the overhead due to added instructions negligible. Furthermore,
with DETECTOR, the actuators are already in the right position during the
second execution, eliminating the time spent in the busy waiting loop. The
code size overhead measurements of DETECTOR show that DETECTOR has
a similar CSO to FDSC and SWIFT, albeit slightly higher in most cases.

Interestingly the implementation of DETECTOR on the QS case study shows
a CSO of ×2.9, which is lower than SWIFT (×3.3), FDSC (×4.4), and
RACFED (×3.1). Only CFCSS has a lower CSO of ×2.7. However, the
ETO of DETECTOR for this case study was far out the worst of all techniques,
with an ETO of ×6.4, compared to ×3.7, ×3.8, ×2.8, and ×2.8 for SWIFT,
FDSC, CFCSS, and RACFED, respectively. This further establishes that the
ETO of DETECTOR is highly dependent on the location where its instructions
are inserted.

The results of the overhead measurements show that, just like the error detection
ratio and SDC ratio, the CSO and the ETO can differ greatly depending on
the target application, especially for DETECTOR. All four factors should
therefore be tested and taken into consideration when choosing an error detection
technique for a specific application.
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4.4 Conclusion

In this chapter, the DETECTOR technique was introduced, emphasizing its
approach of utilizing low-level re-execution to ensure data integrity. Unlike
traditional methods that rely on extensive shadow registers, DETECTOR
enhances fault tolerance through strategic re-execution.

The core concepts of DETECTOR were first explained including the identifica-
tion of vulnerable sections within a program and the mechanisms for checkpoints
and re-execution points. These foundational elements enable DETECTOR to
periodically validate the integrity of register values, ensuring errors are detected
before they can affect the program output.

Section 4.2 demonstrated how DETECTOR was implemented in ARMv7-M
using the bubble sort algorithm as a concrete example. The example illustrated
the insertion of checkpoints and re-execution points, as well as the processes
for comparing execution states to detect discrepancies. It also shows that no
matter the size or complexity of the program, DETECTOR only uses three
registers for its operation. This is a significant advantage over other techniques
DFED and hybrid techniques.

In Section 4.3, DETECTOR’s performance was assessed through fault injection
experiments and overhead measurements. The results show that DETECTOR
reduces the SDCs occurring in a program with similar effectiveness to the
state-of-the-art when tested on data-processing case studies. When testing on
I/O-driven case studies, DETECTOR showed poor results for CFE detection, as
it increased the SDC ratio for two of the three case studies. Analysis showed that
this is due to CFEs that jump to a checkpoint, which can remain undetected
by DETECTOR.

Section 4.3 also revealed that DETECTOR incurs a significant Execution
Time Overhead (ETO), especially in cases involving hot loops. This is a direct
consequence of its re-execution strategy, which, while thorough, can substantially
increase the number of CPU cycles. The Code Size Overhead (CSO) was found
to be comparable to other techniques, though it varied depending on the specific
application.

Finally, Section 4.3 again highlighted the register availability advantage of
DETECTOR over other techniques, as it requires only three registers for
operation. This enables DETECTOR to be applied to all case studies, unlike
other DFED techniques that fail to compile on several case studies due to a
lack of available registers.

In conclusion, DETECTOR presents a viable solution for soft error detection
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with the notable advantage that it can be applied to a wide range of applications
without the need for extensive register resources. While the technique does
incur a significant execution time overhead on applications with vulnerable
sections in hot loops, its effectiveness in reducing SDCs in the data-processing
case studies shows that the technique is a valuable option for applications where
data integrity is crucial.





Chapter 5

Optimizing the DETECTOR
Technique

This chapter is based on the work published in [101] and [102]. Since publication
of these papers, the results have been updated to reflect the latest version of the
techniques. Hence, this chapter reflects the latest version of the techniques.

As mentioned in Chapter 4, DETECTOR uses two shadow stacks to achieve
runtime redundancy. However, the continuous memory access instructions
create a pipeline stall, which results in a large execution time overhead. This
is especially an issue when a hot loop in the program contains vulnerable
instructions. This causes a checkpoint to be inserted in the hot loop, thus,
introducing many memory access instructions into the program.

To reduce this overhead and further optimize DETECTOR, two optimizations
were developed. The first optimization uses the concept of selective imple-
mentation in order to reduce overhead. This is discussed in Section 5.1. The
second optimization is a variation on DETECTOR that uses a parity-checking
mechanism instead of the second shadow stack. This is discussed in Section 5.2.

5.1 Selective Implementation

A common way to reduce overhead in SIHFT techniques is to selectively apply
the technique to only the most vulnerable parts of the program [69]. By
protecting only a subset of elements, e.g., a few CPU registers or blocks of

57
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instructions, it is possible to achieve significant overhead reductions with minimal
effects on overall reliability. The parts to protect should be selected based on
their vulnerability and contribution to overhead. Based on this concept, a
selective implementation of the DETECTOR technique was developed, called
S-DETECTOR.

5.1.1 Core Concepts

The selective implementation of DETECTOR only protects a subset of the
registers. In Chapter 4, the concept that registers are used to hold temporary
values for computing and final values are written to memory was introduced.
With this in mind, S-DETECTOR only protects the registers that are often
used in memory operations.

Based on a dynamic analysis [70] of the register usage in the program, a map of
how often each register is used to write to memory can be created. This analysis
steps through the program and counts the number of times each register is used
to write to or from memory. For loads from memory, only registers containing
the source address are counted. This is because the destination register will be
overwritten by the load operation. For stores, both the data and destination
register are counted. The registers that interact most often with memory should
be prioritized as the most vulnerable registers and should therefore be protected
by S-DETECTOR.

Selecting the number of registers to protect is a trade-off between reliability
and overhead. The more registers that are protected, the more reliable the
technique will be, but the more overhead will be introduced. For the purpose
of this thesis, the number of registers to protect are manually selected based on
the results of the dynamic analysis.

5.1.2 Implementation

As explained in Chapter 4, DETECTOR uses two shadow stacks. This is shown
in Figure 5.1. The first shadow stack, S1, is used to store the register values
at the checkpoints (S1.pushAll(registers)). These values are restored before
starting the second execution cycle (registers ← S1.popAll()). These stores
and writes cannot be performed selectively, as this would break the re-execution
mechanism of DETECTOR.

The second shadow stack, S2, is used to store the values calculated after the
first execution cycle (S2.pushAll(registers)). They are then compared to the
values calculated after the second execution cycle to verify the data integrity
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S1.pushAll(registers)

Program code

S2.pushAll(registers)

registers ← S1.popAll()

compare()

Vulnerable section

. . .

checkpoint

function compare():

for each register ∈ registers:
temp← S2.pop()
if temp ̸= register:
errorHandler()

Figure 5.1: The re-execution flow of a program protected with DETECTOR,
showing the locations of the push and pop operations to the shadow stacks (S1
and S2) and the compare subroutine. The push and pop operations onto and
from S2 (highlighted with a thick border) can be optimized by S-DETECTOR.

in the compare subroutine. These are the parts that can be optimized by
S-DETECTOR.

By only pushing the vulnerable registers to shadow stack S2 after the first
execution cycle, the number of memory write operations is already reduced.
More importantly, however, is that this also reduces the number of CPU cycles
needed in the comparison stage of DETECTOR.

In Figure 5.2, the compare subroutine of the full DETECTOR implementation
is compared to that of the selective implementation when only protecting one
register (r0 in this case). Notice that the number of instructions for this
comparison has been reduced by a factor of six. Moreover, a large amount of
nonconsecutive memory read instructions (ldr) have been removed. Eliminating
these instructions removes the multiple pipeline stalls that come with memory
operations, further decreasing the amount of CPU cycles executed during the
compare subroutine.
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compare:

CMPr0: ldr G, [S2], #4 @ r0
cmp r0, G
bne ERR

. . .

CMPr12: ldr G, [S2], #4 @
r12

cmp r12, G
bne ERR

CMPsp: ldr G, [S2], #4 @ sp
cmp sp, G
bne ERR

RET : ldr G, [S2], #4 @ lr
bx lr

ERR: bl errorHandler

(a) The compare subroutine of
DETECTOR.

compare:

CMPr0: ldr G, [S2], #4 @ r0
cmp r0, G
bne ERR

RET : ldr G, [S2], #4 @ lr
bx lr

ERR: bl errorHandler

(b) The compare subroutine of
S-DETECTOR when only protecting
register r0.

Figure 5.2: Comparison of the compare subroutine of DETECTOR and
S-DETECTOR using the ARMv7-M assembly language.

5.1.3 Impact Analysis

To demonstrate how S-DETECTOR reduces the overhead of DETECTOR, the
additional instruction cycles for each vulnerable section will be calculated. This
analysis will be conducted using the ARMv7-M architecture.

Instruction Cycles Added by DETECTOR

All pushAll() and popAll() operations of DETECTOR take N + 1 instruction
cycles, with N being the number of registers in the register list to be pushed [68].
The real culprit, however, is the compare subroutine. For each register to be
checked, a load instruction, a compare instruction, and a conditional not equal
branch instruction are added. Since each load instruction takes two instruction
cycles, this adds up to a total of 4N additional instruction cycles for the compare
subroutine. After adding up all the remaining instructions that are added for
the DETECTOR technique, the total amount of added instruction cycles for



PARITY CHECKING 61

each vulnerable section is:
I+

V Sdetector
= 7N + 4P + C + 14 (5.1)

where {N, P ∈ N | P ≤ 3 | C ∈ N0 | C ≤ 3}

Appendix B.1 provides a more detailed explanation of how this formula is
derived. In Equation (5.1), N is the aforementioned number of registers to
be pushed or popped, P is the number of cycles required for a pipeline refill,
ranging from 1 to 3 [68], and C varies between 0 and 3, depending on the
number of possible re-execution paths for a single vulnerable block. In the case
of DETECTOR on an ARMv7-M-based processor, N = 12, and thus results in
Equation (5.2):

I+
V Sdetector

∈ [102, 113] |N=12 (5.2)

Instruction Cycles Added by S-DETECTOR

S-DETECTOR only protects the most vulnerable registers. Therefore, the
compare subroutine of S-DETECTOR only adds 4M instruction cycles, with M
being the number of registers to be protected. The same goes for the push to
shadow stack S2 during the re-execution point, changing from N + 1 to M + 1.
This results in Equation (5.3):

I+
V Ss−detector

= 5M + 2N + 4P + C + 14 (5.3)
where {M, N, P ∈ N | P ≤ 3 | C ∈ N0 | C ≤ 3}

Like before, P is the number of cycles required for a pipeline refill, ranging from
1 to 3 [68] and C varies between 0 and 3, depending on the number of possible
re-execution paths for a single vulnerable block. In the case of DETECTOR on
an ARMv7-M-based processor, N = 12. Thus, if only one register is protected
(M = 1), the result is Equation (5.4):

I+
V Ss−detector

∈ [47, 58] |M=1 | N=12 (5.4)

For each additional protected register, the added instruction cycles per
vulnerable section increase by five. Apart from the derivation of Equation (5.3),
Appendix B.2 provides Table B.4, showing how many instruction cycles are
added depending on the number of protected registers.

5.2 Parity Checking

Another approach to optimize the DETECTOR technique is changing the way
that the data integrity is verified. Instead of storing all calculated registers to a
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Algorithm 5.1 The P-DETECTOR operations performed during a re-execution
point.

1: if G ̸= 0 then
2: for all register ∈ registers do
3: P ← P ⊕ register

4: registers← S.popAll()
5: for all sigi ∈ sources do
6: if G = sigi then
7: G← 0
8: goto checkpointLabeli
9: else

10: for all register ∈ registers do
11: P ← P ⊕ register

12: if P ̸= 0 then
13: errorHandler()

second shadow stack and comparing them one by one after the re-execution phase,
a parity-checking mechanism can be used. This variation on the DETECTOR
technique is called P-DETECTOR.

5.2.1 Core Concepts

The P-DETECTOR technique removes the second shadow stack S2 and its
associated push and pop operations, including the compare() subroutine. This
is replaced with parity calculations and a parity check. Hence, the re-execution
point operations are now modified to Algorithm 5.1. The first (and now only)
shadow stack with stack pointer S (previously S1) is still used, together with
the signature variable G.

Just like with DETECTOR, operation 1 through 8 are performed after the first
execution because of the nonzero value of G. However, instead of pushing all
registers to a shadow stack, an exclusive or (⊕) operation P ← P ⊕ register is
performed for each register (lines 2 and 3). In this way, the parity of all registers
is calculated. Next, just like with DETECTOR, the original register values are
restored from the shadow stack, the signature variable is set to zero, and the
program jumps to the checkpoint label checkpointLabeli (lines 4 through 8).

After the second execution, the same parity calculation is performed again
(lines 10 and 11). Note that now, however, the parity variable P already holds
the calculated parity of the first execution. Since register values should agree
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after two error-free executions, the parityV alue should be zero after the second
execution (A⊕A = 0 for any value A). This is verified in lines 12 through 13.

Since the equality of the register state is now verified by comparing the parity,
the possibility exists that two unequal register states result in the same parity.
This can happen if the same bit is corrupted an even number of times in multiple
registers. For example, if register A = 0b10 gets corrupted to A′ = 0b11 and
register B = 0b01 gets corrupted to B′ = 0b00, parity of these registers will be
equal, like shown in Equation (5.5).

A⊕B = 0b10⊕ 0b01 = 0b11

A′ ⊕B′ = 0b11⊕ 0b00 = 0b11 (5.5)

⇒ A⊕B = A′ ⊕B′

5.2.2 Implementation

Since the P-DETECTOR technique is a variation of the DETECTOR technique,
its implementation is largely the same. The same example program as in
Chapter 4 will be used to explain the low-level implementation of P-DETECTOR
(Figure 4.2). The P-DETECTOR technique implemented on the bubble sort
algorithm is shown in Figure 5.3. In this figure, the instructions that differ from
the DETECTOR implementation are marked in bold.

The instructions added in the checkpoint are the same as in the DETECTOR
implementation. P-DETECTOR still uses one shadow stack to store the register
values at the checkpoints and the signature is updated to a unique nonzero
signature value. Once again, G is used as the signature register. Since there is
now only one shadow stack, its pointer is now stored in S.

The code added in the re-execution point starts the same: the signature register
is checked against zero to determine if the program is in its first or second
execution stage (e.g., at label BB7). However, instead of pushing the register
values to the second shadow stack, the calculateParity subroutine is called.
This subroutine is shown in Figure 5.4.

An exclusive or (eor) operation is performed over each CPU register, the result
of which is stored in a parity register (P in this instance). However, since the
ARM assembler again does not allow the stack pointer to be an operand of the
exclusive or operation, the stack pointer is temporarily saved to G, which is then
used for the exclusive or instead. This is done before the call to the subroutine
since the link register is also stored in the same G register.
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CP0: mov G, sp
stmdb S!, {r0. . . G, lr}
mov G, sig0

PS0: cmp r1, #0
ble RE7

BB1: push {r4, r7}
subs r7, r1, #1

RE7: cmp G, #0
beq RE7B

RE7A: mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
ldmia S!, {r0. . . G, lr}
mov sp, G
mov G, #0
b PS0

RE7B : mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
mov lr, G
cmp P, #0
bne errorHandler

V S7: bx lr

BB2: cbz r7, BB5

BB3: mov r3, r0
adds r4, r7, r0

BB4: ldrb r2, [r3, #0]
ldrb r1, [r3, #1]!

RE4: cmp G, #0
beq RE4B

RE4A: cmp G, sig0
mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
ldmia S!, {r0. . . G, lr}
mov sp, G
mov G, #0
beq PS0

bne PS4

RE4B : mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
mov lr, G
cmp P, #0
bne errorHandler

V S4: cmp r2, r1
itt hi
strbhi r1, [r3, #-1]
strbhi r2, [r3, #0]

CP4: mov G, sp
stmdb S!, {r0. . . G, lr}
mov G, sig4

PS4: cmp r3, r4
bne BB4

BB5: adds r7, r7, #4294. . .
bcs BB2

BB6: pop {r4, r7}
RE6: cmp G, #0

beq RE6B

RE6A: cmp G, sig0
mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
ldmia S!, {r0. . . G, lr}
mov sp, G
mov G, #0
beq PS0

bne PS4

RE6B : mov G, sp
eor P, P, G
mov G, lr
bl calculateParity
mov lr, G
cmp P, #0
bne errorHandler

V S6: bx lr

if G̸=0 then

Compare G to sig0

P ←calculateParity()

registers←S.popAll()

G←0

if G=sig0 then goto PS0

else goto PS4

else
P ←calculateParity()

if G̸=0 then
goto <errorHandler>

S.pushAll(registers)

G←sig4

Figure 5.3: The P-DETECTOR technique implemented on the bubble sort
algorithm. The instructions that differ from the DETECTOR technique are
indicated in bold.
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calculateParity:

EOR: eor P, P, r0
eor P, P, r1
eor P, P, r2
. . .
eor P, P, r12

RET : bx lr

Figure 5.4: The calculateParity subroutine of the P-DETECTOR technique
in ARMv7-M assembly language.

Next, the register values from before the first execution are popped from the
shadow stack and the signature register is updated to zero to mark the start of
the second execution, before jumping to the checkpoint.

After the second execution, the program will jump to the second part of the
re-execution point (e.g., label RE7B) to again calculate the parity. As mentioned
before, the result of this second parity calculation should be zero for an error-free
execution. If this is not the case, the error handler will be called at the end of
the re-execution point.

5.2.3 Impact Analysis

Instruction Cycles Added by P-DETECTOR

By replacing the push and pop operations to and from the second shadow
stack with a parity calculation subroutine, the added instruction cycles are
reduced significantly. When again looking at an ARMv7-M-based processor,
the push and pop instructions to the first (now only) shadow stack remain the
same, both adding N + 1 instruction cycles. The second push to the second
shadow stack and the compare subroutine are both replaced by a more efficient
calculateParity subroutine, now only adding N instruction cycles for each
call to calculateParity (instead of 4N). Adding all remaining instructions for
the P-DETECTOR technique results in Equations (5.6) and (5.7):

I+
V Sp−detector

= 4N + 6P + C + 22 (5.6)

where {N, P ∈ N | P ≤ 3 | C ∈ N0 | C ≤ 3}

I+
V Sp−detector

∈ [76, 91] |N=12 (5.7)
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A

P == 0

vulnerable section A

checkpoint A

B

P ̸= 0

. . .

first execution second execution

first execution second execution

P ← 0⊕ pA

= pA

P ← pA ⊕ pA

= 0
P = pA

P ← pA ⊕ pB

= pX

P ← pX ⊕ pB

= pA

CFE

Figure 5.5: In contrast to DETECTOR, control flow errors that jump to a
checkpoint can often be caught by P-DETECTOR.

A more detailed explanation of the derivation of Equation (5.6) is attached in
Appendix B.3.

Improved CFE Detection

An additional advantage that comes with this approach is an improved CFE
detection capability. As established in Chapter 4, when the comparison step of
DETECTOR is skipped by an erroneous jump, there is a large chance that the
error will remain undetected. This is because DETECTOR is not able to detect
a fault if the first and second execution cycle both contain the same corrupted
register values.

Figure 5.5 shows how P-DETECTOR behaves in the same scenario. After the
first execution of the A block, a parity of pA is calculated. Since the CFE occurs
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during the second execution of the A block, the P register still holds this value
at the start of the B block. As a result of this, the parity register (P ) will
hold this nonzero value after the two execution cycles of the B block, resulting
in the error handler being triggered in the next step. The persistence of the
parity value after the validation step causes a control flow error skipping the
verification step to have a high chance of being caught at a later point in the
program. This makes P-DETECTOR significantly more effective for these types
of CFEs.

Protected Link Register

A final improvement of P-DETECTOR is that it can protect the link register.
DETECTOR was unable to do so since the function call to the compare
subroutine changes the link register to the return address of the subroutine.
P-DETECTOR works around this issue by temporarily assigning the link register
to the signature register before the function call to calculateParity. This
feature causes P-DETECTOR to have a slight advantage in data flow error
detection.

5.3 Evaluation

Like DETECTOR, S-DETECTOR and P-DETECTOR are evaluated through
CFE and DFE fault injection campaigns on the data-processing and I/O-driven
case studies described in Chapter 3. In the following sections, the results of
S-DETECTOR and P-DETECTOR are compared to the results of DETECTOR.
A full overview of the results, including the comparison with CFCSS, RACFED,
SWIFT, and FDSC can be found in Appendix A.

5.3.1 Dynamic Register Analysis

Before evaluating S-DETECTOR, the dynamic register analysis should be
performed on all case studies to determine which registers to protect. The
results of this analysis are shown in Appendix C.

For each case study, one to seven registers are selected for protection, based
on how often they interact with memory. The only exception is the bit count
program, which does not interact with memory. For this case study, the register
(r0) was manually selected based on the program’s structure.
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Figure 5.6: Boxplots of the CFE single-bit fault injection results performed on
the data-processing case studies protected with DETECTOR, S-DETECTOR,
and P-DETECTOR on the ARMv7-M ISA, showing the error detection ratio
and SDC ratio.

5.3.2 Fault Injection Results for the Data-Processing Case
Studies

Before discussing how S-DETECTOR and P-DETECTOR impact the overhead
of the DETECTOR technique, the results of the fault injection campaigns
will first be discussed. Figure 5.6 shows the results of the CFE fault injection
campaign on the data-processing case studies.

As expected, the selective implementation of S-DETECTOR causes the error
detection ratio and SDC ratio to worsen compared to DETECTOR. This varies
between case studies, depending on how many and which registers are protected
and how much the unprotected registers eventually influence the program
execution. There will always be a trade-off between the number of registers
protected and the error detection capability of the technique.

When looking at P-DETECTOR, the results show an improvement over the
original DETECTOR technique, with the error detection ratio increased to
76.5% and the SDC ratio decreased to 3.4%. Detailed analysis confirms that
this is indeed due to the advantages of the double parity calculations described
in Section 5.2.3.

Figure 5.7 show the results of the DFE fault injection campaigns on the data-
processing case studies. The results of the S-DETECTOR technique show a
similar image as those from the CFE fault injection results: the error detection
ratio and SDC ratio are worse than those of DETECTOR. A notable exception
here is the DIJ case study, where even though the error detection ratio has
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Figure 5.7: Boxplots of the DFE single-bit fault injection results performed on
the data-processing case studies protected with DETECTOR, S-DETECTOR,
and P-DETECTOR on the ARMv7-M ISA, showing the error detection ratio
and SDC ratio.

decreased compared to DETECTOR (from 34% to 19%), the SDC ratio has
also decreased (from 6.3% to 4.9%). This shows that in certain cases, a selective
implementation can be highly effective.

The error detection ratio of the P-DETECTOR technique is slightly lower than
that of DETECTOR. This is to be expected since some injected faults can
result in an equal parity value, even when the actual register values are not the
same. The difference is, however, so small that this is not reflected in the SDC
ratio, which is equal to that of DETECTOR. This higher SDC ratio is also the
result of P-DETECTOR being able to protect the link register, in contrast to
DETECTOR.

5.3.3 Fault Injection Results for the I/O-Driven Case Studies

The results of the CFE fault injection campaign on the I/O-driven case studies
are shown in Figure 5.8. As expected S-DETECTOR shows a decrease in
error detection ratio and an increase in SDC ratio compared to DETECTOR.
Additionally, the same disappointing results from DETECTOR, namely an
increased SDC ratio for two of the three I/O-driven case studies, are also
present in the S-DETECTOR results. We hypothesized that P-DETECTOR
would largely mitigate this issue by catching more erroneous jumps that skip
the assertion step of the technique. The results show that this hypothesis is
correct, with the error detection ratio increased to an average of 47.4% and,
more importantly, the SDC ratio decreased to an average of 11.5%.
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Figure 5.8: The results of the single-bit CFE fault injection campaigns on
the I/O-driven case studies protected with DETECTOR, S-DETECTOR, and
P-DETECTOR on the ARMv7-M ISA.
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Figure 5.9: The results of the single-bit CFE fault injection campaigns on
the I/O-driven case studies protected with DETECTOR, S-DETECTOR, and
P-DETECTOR on the ARMv7-M ISA.
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Figure 5.10: Boxplots showing the Code Size Overhead (CSO) and Execution
Time Overhead (ETO) of DETECTOR, S-DETECTOR, and P-DETECTOR
on the Cortex-M3 processor.

The results of the DFE fault injection campaign on the I/O-driven case studies
shown in Figure 5.8 show a similar image as with the data-processing case
studies. However, since the effect of DFEs on the I/O-driven case studies is
already quite low, the effects of S-DETECTOR and P-DETECTOR are less
significant than with the data-processing case studies.

5.3.4 Overhead Evaluation

Figure 5.10 shows the overhead evaluation of S-DETECTOR and P-DETECTOR
compared to DETECTOR and other state-of-the-art techniques.

Looking at the results for S-DETECTOR, it is apparent that the selective
approach of S-DETECTOR significantly reduces the ETO of the different case
studies. However, the overhead is still highly dependent on the case study on
which the technique is applied, which can be seen by the high spread in the
ETO boxplot, still suffering from high overheads when a vulnerable section is
located in a hot loop.

As is to be expected, the effect of the selective approach of S-DETECTOR
is less significant when looking at code size overhead. This is because the
comparison stage of DETECTOR and P-DETECTOR is implemented as a
single subroutine. Reducing the size of this subroutine reduces the dynamic (i.e.
executed) instructions significantly, but does not affect the static instructions
nearly as much. Only for small case studies, where the comparison stage is
large compared to the rest of the program, does the code size overhead of
S-DETECTOR show a significant reduction.

Apart from the improvement in CFE detection, the main focus of P-DETECTOR
was to reduce the execution time overhead of DETECTOR. Figure 5.10 shows



72 OPTIMIZING THE DETECTOR TECHNIQUE

P-DETECTOR does indeed lower this overhead. However, the overhead is still
significantly higher than the SOTA for the case studies that execute a lot of
vulnerable sections. In most cases, the CSO of P-DETECTOR is higher than
that of DETECTOR. This is because P-DETECTOR adds more instructions
per vulnerable section.

5.4 Conclusion

In this chapter, two optimizations of the DETECTOR technique were presented:
S-DETECTOR and P-DETECTOR.

S-DETECTOR is a selective implementation of DETECTOR that only protects
a subset of the registers. More specifically, only the registers that most often
interact with memory are protected. This approach makes a trade-off between
the error detection capability of the technique and the overhead it introduces.
This is backed up by the fault injection results and overhead analysis presented
in this chapter.

P-DETECTOR is an optimization of DETECTOR that replaces the memory
operations in the comparison stage with a parity calculation. This not only
reduces the execution time overhead but also improves the control flow error
detection capabilities.

For the case studies where vulnerable sections are present in a hot loop, the
ETO of the DETECTOR techniques is still significantly higher than the SOTA,
even when using the optimizations presented in this chapter. Still, just like
DETECTOR, S-DETECTOR and P-DETECTOR are able to detect both CFEs
and DFEs while only utilizing three registers, making them a valuable alternative
when classical SIHFT techniques fail due to a lack of register availability.



Chapter 6

The RISC-V architecture

While the previous chapter optimized DETECTOR by adapting the technique
itself, another optimization possibility is to explore hardware support. The
possibility to add custom instructions to the RISC-V ISA to support SIHFT
techniques will be explored. Before diving into these custom instructions,
however, this chapter introduces the RISC-V instruction set architecture and
how its modular design enables the development of custom processors for a
variety of applications. Section 6.1 first introduces RISC-V ISA and discusses
its modular design. Next, Section 6.2 explains how RISC-V utilizes extensions
to customize the architecture for various end markets. This is followed by
Sections 6.3 and 6.4, which delve deeper into the general-purpose registers
and instruction formats used by RISC-V. Next, Section 6.5 describes how the
RISC-V instruction set architecture can be implemented in hardware. Finally,
Section 6.6 explains how fault tolerance is already present in the state-of-the-art
and briefly discusses how this is implemented.

6.1 What is RISC-V?

Figure 6.1: The RISC-V
logo

RISC-V (pronounced “risk-five”) is an open-source
instruction set architecture used to develop cus-
tom processors for a variety of applications, from
embedded designs to supercomputers. Originating
from the University of California, Berkeley, RISC-V
represents the fifth generation of processors based
on the Reduced Instruction Set Computer (RISC)

73
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Table 6.1: The base integer instruction sets of the RISC-V standard.

Name Size Registers Version Status
RV32I 32-bit 32 2.1 Ratified
RV32E 32-bit 16 2.0 Ratified
RV64I 64-bit 32 2.1 Ratified
RV64E 64-bit 16 2.0 Ratified
RV128I 128-bit 32 1.7 Draft

concept. Unlike proprietary architectures, RISC-V is an open-source ISA,
enabling developers to adapt and extend without licensing limitations. Its
openness and technical strengths have led to its widespread adoption in recent
years. The standard is now managed by the nonprofit RISC-V International
organization, which reported that more than 13 billion chips containing
RISC-V cores had shipped by the end of 2023 [71]. Many implementations of
RISC-V are available, both as open-source cores [72, 73] and as commercial IP
products [74, 75].

Another key feature of RISC-V is its modular design. The RISC-V standard
features a small core set of instructions on which all RISC-V are based. Its
optional extensions enable designers to customize the architecture for various
end markets. This means that designers can tailor their processors to meet
specific application requirements, optimizing power, performance, and area by
selecting which modules to use from the standardized extensions. Additionally,
RISC-V provides the possibility to create custom nonstandard extensions to the
ISA. This flexibility enables designers to create highly customized processors
that are optimized for their specific applications, rather than having to use a
one-size-fits-all solution.

These factors lead to an increasing interest from industry, with the RISC-V
IP expected to grow at a compounded annual growth rate of more than 40%
between 2022 and 2030 according to a market report from the SDH Group [76].
This growth is largely from the three main market segments interested in
the architecture: IP providers who can offer their own designs, System on a
Chip (SoC) teams using commercial IP, and designers building custom RISC-V
processor-based SoCs.
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Table 6.2: Standard unprivileged extensions of RISC-V.

Subset Name Implies
Integer Multiplication and Division M Zmmul
Atomics A -
Single-Precision Floating-Point F Zicsr
Double-Precision Floating-Point D F
General (short for IMAFDZicsr_Zifencei) G IMAFDZicsrZifencei
Quad-Precision Floating-Point Q D
16-bit Compressed Instructions C -
Bit Manipulation B -
Packed Single Instruction, Multiple Data P -
Vector V D
Hypervisor H -
Integer Multiplication Zmmul -
Control and Status Register Access Zicsr -
Instruction-Fetch Fence Zifencei -
Total Store Ordering Ztso -

6.2 Extensions

Although it is common to speak of the RISC-V ISA, RISC-V is more accurately
described as a family of related ISAs, of which there are currently four ratified
(finalized) and one draft base ISAs. The base ISAs, listed in Table 6.1 are
characterized by the width of the integer registers (and the corresponding size of
the address space) and by the number of general-purpose CPU registers. The two
primary base integer variants, RV32I and RV64I, provide 32-bit or 64-bit address
spaces respectively with each having 32 general purpose CPU registers [77].
Additionally, their RV32E and RV64E variants are defined to have 16 general
purpose CPU registers, which can be useful for smaller microcontrollers.

Each base integer ISA can be enhanced with one or more optional instruction-set
extensions, which can be classified as standard, custom, or non-conforming.

Standard extensions are given a name consisting of a single letter or using a
single “Z”, followed by an alphabetical name. Table 6.2 lists some standard
extensions that are currently defined in the RISC-V ISA specification. Any
RISC-V instruction-set variant can be described by concatenating the base
integer prefix with the names of the included extensions, e.g., “RV32IMAFD”.
Underscores can be added to separate extensions for clarity.

Some ISA extensions depend on the presence of other extensions, e.g., “D”
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depends on “F” and “F” depends on “Zicsr”. These dependencies may be omitted
from the name as they are implied. For example, “RV32IMAFDQZicsr_Zifencei”
can be shortened to “RV32GQ”.

Optionally, extension version numbers can be placed following the extension or
base name divided into major and minor version numbers, separated by a “p”.
For example, RV32I2p3M2 indicates version 2.3 of the RV32I base ISA and
version 2(.0) of the M extension.

Non-standard custom extensions are named using a single “X” followed by an
alphabetical name. These extensions are not part of the official RISC-V ISA
specification but its guidelines. The RISC-V supports custom extensions by
guaranteeing that portions of the encoding space are never used by standard
extensions.

The RISC-V ISA supports these nonstandard extensions by defining two opcodes,
namely opcodes 0x0b and 0x2b, that are reserved for custom extensions and
will be avoided by future standard extensions. Additionally, opcodes 0x5b and
0x7b are reserved for future use by RV128 but will otherwise be avoided for
standard extensions and can therefore also be used for custom instruction-set
extensions for the RV32I and RV64I base ISAs.

Nonconforming extensions go beyond the specifications and guidelines of the
RISC-V ISA and are not guaranteed to be compatible with current or future
RISC-V base ISAs or extensions.

6.3 Registers

Table 6.3 shows the unprivileged register state for the base integer ISAs (RV32I
and RV64I) [77]. The 32 x registers are each 32 or 64 bits wide, depending on
the ISA variant. Register x0 is hardwired to zero: writing to this register will
have no effect, and reading from it will always return zero. When using the
RV32E or RV64E variants, only the lower 16 registers (x0-x15) are available.

RISC-V does not specify a dedicated stack pointer or subroutine return address
link register but allows any x register to be used for these purposes. However,
x1 is commonly used to hold the return address for a call (with x5 available
as an alternate link register) and x2 is commonly used as the stack pointer.
Additionally, all registers have alternate Application Binary Interface (ABI)
names, which are used in the RISC-V assembly language.
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Table 6.3: Unprivileged registers of the RISC-V base integer ISAs.

Register ABI Name Description
x0 zero Hardwired to zero
x1 ra Return address
x2 sp Stack pointer
x3 gp Global pointer
x4 tp Thread pointer
x5 t0 Temporary/alternate link register
x6-x7 t1-t2 Temporary registers
x8 s0/fp Saved register/frame pointer
x9 s1 Saved register
x10-x11 a0-a1 Function arguments/return values
x12-x17 a2-a7 Function arguments
x18-x27 s2-s11 Saved registers
x28-x31 t3-t6 Temporary registers

6.4 Instruction Formats

The RV32I ISA defines four base instruction formats: R, I, S, and U [77].
They define how the instruction fields are encoded. These formats are
shown in Figure 6.2. The R-type format is used to describe register-register
operations, such as the ADD rd, rd, rs1 and XOR rd, rs1, rs2 instructions.
Similarly, I-type instructions are used for register-immediate operations, such
as ADDI rd, rs, imm and XORI rd, rs, imm. An immediate value is a value
that is decoded directly from the machine code from an operand field, rather
than being read from a register or loaded from memory. S-type instructions are
used for instructions that need two source registers and an immediate value,
such as the store instruction SW rs2, imm(rs1), where a source register (rs2) is
written to the address held by rs1, incremented by a signed offset (imm). Finally,
the U-type instruction format is used to describe purely immediate operations
that do not require any source registers, such as the LUI rd, imm (load upper
immediate) instruction, which loads an immediate value into the upper 20 bits
of a register.

Notice that most instruction formats have function fields. These fields can
be used in tandem with the opcode to determine the exact operation to be
performed. For example, all I-type instructions used by the RV32I base ISA
share the same opcode but are differentiated by the funct3 field. Therefore,
these fields are often referred to as minor opcodes.
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funct7 rs1 rs2 funct3 rd opcode

imm[11:0] rs funct3 rd opcode

imm[11:5] rs1 rs2 funct3 imm[4:0] opcode

imm[31:12] rd opcode

[12] imm[10:5] rs1 rs2 funct3 imm[4:1] [11] opcode

[20] imm[10:1] [11] imm[19:12] rd opcode

Base Instruction Formats

R-Type

31 25 24 20 19 15 14 12 11 7 6 0

I-Type

31 20 19 15 14 12 11 7 6 0

S-Type

31 25 24 20 19 15 14 12 11 7 6 0

U-Type

31 12 11 7 6 0

Additional Instruction Formats

B-Type

31 30 25 24 20 19 15 14 12 11 8 7 6 0

J-Type

31 30 21 20 19 12 11 7 6 0

Figure 6.2: The six instruction formats of the RISC-V instruction set
architecture.

Figure 6.2 shows two additional instruction formats, namely the B- and J-type.
These solely differ from the S- and U-type formats by the handling of immediates.
The B-type format is used to describe conditional branch instructions and the
J-type format for unconditional jump instructions. Hence, the 12-bit immediate
field of this format encodes branch offsets. In the base RISC-V ISAs, all
instructions are aligned to 32-bit boundaries. However, the ‘C’-extension allows
for 16-bit compressed instructions, meaning that only a 16-bit alignment is
guaranteed. Therefore, the offset of each branch instruction will be a multiple
of two bytes. To accommodate this, the immediate field of the B-type format
is encoded in multiples of two by keeping the middle bits (imm[10:1]) and the
sign bit (imm[12]) but replacing the lowest most bit of the S format with a
high-order bit in the B format (imm[11]). A similar strategy is employed for
the J-type instruction, shifting the immediate left by 1 bit (imm[20:1]). The
placement of bits in the U- and J-type immediates maximizes overlap with other
formats.
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6.5 From ISA Definition to Hardware
Implementation

While the RISC-V instruction set architecture specifies the instructions that
a processor must support, it does not define how these instructions are
implemented. RISC-V implementations refer to the different methods by
which the RISC-V ISA is realized in hardware. These implementations vary
from soft-core designs, which run on programmable logic devices like Field-
Programmable Gate Arrays (FPGAs), to hard-core designs embedded in custom
silicon chips [78]. Each implementation type offers distinct advantages and
drawbacks, influenced by considerations like performance, power efficiency, and
development cost.

Soft-core RISC-V implementations are the most approachable implementations
of RISC-V cores. Since they are designed to run on programmable logic devices
like FPGAs their implementation can be easily modified and reconfigured
to meet specific design requirements. This flexibility makes them ideal for
prototyping and research purposes. It also makes the implementation much
more cost-effective than creating a custom silicon chip, especially for small-scale
projects or proof-of-concept designs. Additionally, the fact that these designs do
not require the lengthy fabrication process associated with custom silicon chips,
means that soft-core RISC-V designs have a far faster time-to-market time.
However, soft-core implementations are generally slower and less power-efficient
than hard-core implementations. One example of such a soft-core RISC-V
implementation is the Proteus RISC-V core developed by Bognar et al. [79].
This FPGA implementation in SpinalHDL uses a plugin system to make the
processor easily configurable and extensible.

Hard-core RISC-V implementations are designs that are integrated into custom
silicon chips, such as Application-Specific Integrated Circuits (ASICs) or
SoC devices. These implementations offer higher performance and lower
power consumption than soft-core implementations. However, the cost of
chip fabrication, testing, and packaging is significant, making this form
of implementation far more expensive than soft-lcore designs. The design,
production, and testing process for silicon chips is also very time-consuming,
resulting in a longer time-to-market time. Therefore, hard-core RISC-V
implementations are generally only used for large-scale commercial projects
where the performance and power efficiency benefits outweigh the cost and time
drawbacks.
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6.6 Fault-Tolerant RISC-V Cores

The free and open character of RISC-V lowers the barrier to implementing
custom modifications, such as adding fault tolerance features. This research area
largely focuses on the use of redundant hardware, namely Dual or Triple Modular
Redundancy (DMR/TMR). For example, the Thales Group and Antmicro AB
developed a TMR RISC-V demonstrator with three redundant RV32I Rocket
cores, voter, fault injector, and system monitor [80].

More extraordinary approaches, e.g., a heterogeneous lockstep system with a
RISC-V Rocket and Arm Cortex-A9 core have also been proposed [81]. Other
examples include the Klessydra RISC-V core [82], which is based on the PULPino
microcontroller system [83]. This core is designed for space applications and
explores several fault tolerance features, such as spatial redundancy (including
DMR and TMR) and temporal redundancy (e.g. repetition with error detection).

Dörflinger et al. proposed a more generic approach, describing five fault tolerance
features and components such as the use of redundant CPUs with N-modular
redundancy [84].

It is worth noting that these state-of-the-art solutions emphasize the architec-
tural implementation of existing RISC-V ISAs, rather than introducing ISA
extensions aimed at fault tolerance. In contrast, the Bratter approach by Park
et al. [85] does propose an ISA extension. They discuss a forward control
flow integrity extension that uses a dedicated branch tag register and two new
instructions to provide a signature-checking mechanism. To our knowledge,
no such extensions have been proposed in the SOTA for DFED or hybrid
techniques.



Chapter 7

Using RISC-V Extensions to
Support SIHFT Techniques

The introduction and popularity of the extendable RISC-V ISA opens new
opportunities for hardware-supported SIHFT techniques. This chapter will
discuss how a custom RISC-V extension can be employed to create processors
that provide custom instructions for SIHFT techniques. First, Section 7.1 will
explore why hardware support for SIHFT techniques might be beneficial. Next,
Section 7.2 will show how a custom RISC-V extension can be created to provide
instructions for the P-DETECTOR technique, after which Section 7.3 will
show how these new instructions impact the overhead of the P-DETECTOR
technique by providing an impact analysis. To test the custom extension, the
GNU assembler was extended to support the new instructions, as discussed in
Section 7.4, after which the extension was simulated using the Imperas ISS in
Section 7.5. This simulation will be used to evaluate the performance of the
P-DETECTOR technique using the custom RISC-V processor against a default
RISC-V processor in Section 7.6. Finally, Section 7.7 will discuss the challenges
of formally verifying a custom RISC-V extension, before concluding this chapter
in Section 7.8.

7.1 Hardware Support for SIHFT Techniques

The use of custom instructions to support SIHFT techniques can provide a
significant overhead reduction over purely software-based implementations.
By providing instructions that are tailor-made for the SIHFT technique, the

81
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number of instruction cycles required to perform the technique can be reduced
significantly.

Meanwhile, the flexible nature of SIHFT techniques is preserved, enabling the
developer to selectively apply the technique to specific parts of the program.
For example, safety-critical parts of the application can be protected using a
SIHFT technique while less critical parts can be left unprotected to utilize the
full performance of the processor or to save energy. This flexibility is especially
useful in embedded systems where resources are limited and performance is
critical.

7.2 An Extension to Support P-DETECTOR

To show how a custom RISC-V extension could be used to support SIHFT
techniques, an extension to support the P-DETECTOR technique was created.
This extension, called “Xpdetector” (Xpdetector1p0), is a so-called nonstandard
extension but conforms to the RISC-V standard by using the encodings reserved
for custom extensions.

Our Xpdetector extension defines:

• Two additional special purpose registers (sr and pr) to store the signature
and parity values;

• A duplicated register bank to store the register values at checkpoints;

• A Checkpoint Immediate (CPI) instruction to create the checkpoints;

• A Parity (PAR) instruction to calculate the parity of the register values;

• A Re-execute Immediate (REI) instruction to re-execute parts of the
program;

• A Parity Zero and Link (PZAL) instruction to verify that the parities of
two execution cycles were equal.

The extension is designed to work on the RV32I, RV32E, RV64I, and RV64E
base ISAs. It is implemented utilizing the opcodes 0x0b, 0x2b, and 0x5b reserved
for custom nonstandard extensions. In the following sections, these opcodes
will be referred to as OP-CPI/PAR, OP-REI, and OP-PZAL, respectively, as shown
in Table 7.1.

Note that, just like an ISA specification, the description of this extension
does not specify how the instructions shall be implemented in hardware. The



AN EXTENSION TO SUPPORT P-DETECTOR 83

Table 7.1: The opcodes used by the Xpdetector extension.

Name Opcode
Major opcodes

OP-CPI/PAR 0x0b
OP-REI 0x2b
OP-PZAL 0x5b

Minor opcodes
CPI 0x1
PAR 0x0

implementation of the instructions is left to the hardware designer, as long as
the instructions conform to the specification. Schematics of the workings of the
instructions in the following sections are merely illustrative and do not represent
a real-world implementation.

7.2.1 Special Purpose Registers

The P-DETECTOR technique uses a general-purpose register as a signature
register to keep track of which checkpoints should be jumped to when re-
executing parts of the program. In Chapter 5, this register was referred to
as register G. For this, Xpdetector defines a special 12-bit special purpose
signature register (sr). The register is only 12 bits wide because the instruction
encoding used to set the signature value only allows for a 12-bit immediate
value. More on this in Section 7.2.3. The signature register cannot be accessed
by the programmer directly but is used by the CPI and REI instructions to store
and retrieve the signature.

Similarly, P-DETECTOR uses another general-purpose register to store and
retrieve the parity value. This register was referred to as register P in Chapter 5.
For this, Xpdetector defines a special XLEN -bit special purpose parity register
(pr), where XLEN is the width of the registers (32 or 64 bits). Just like sr,
pr cannot be accessed by the programmer directly but is used by the PAR and
PZAL instructions to store and retrieve the parity value.
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x0/zero

x1/ra

x2/sp
...

x31/t6

XLEN − 1 0

pr

XLEN − 1 0

pc

XLEN − 1 0

xs1

xs2
...

xs31

XLEN − 1 0

sr

11 0

Figure 7.1: The Xpdetector extension introduces the sr register, pr register
and xs1-xs31 register bank to RISC-V.

7.2.2 Duplicated Register Bank

Chapter 5 discussed how the P-DETECTOR technique pushes the register values
to a shadow stack in the memory at checkpoints. This enables it to restore
the register values when re-executing the program. However, this approach is
proven to be slow due to the high memory latency and the large number of
registers that sequentially need to be restored.

To speed up this process, the Xpdetector extension defines a duplicated register
bank. This 32-bit or 64-bit (depending on if an RV32 or RV64 ISA is used)
register bank consists of 31 registers representing a shadow of registers x1 to
x31. The x0 register has no shadow register as it is hardwired to zero. The
registers in this shadow register bank will be referred to as registers xs1 through
xs31. When using an ISA with a reduced register set, i.e. RV32E or RV64E,
the shadow register bank will be reduced to 15 registers (xs1-xs15) accordingly.
Just like the special purpose registers sr and pr, the shadow registers cannot
be accessed by the programmer directly. They are used by the CPI and REI
instructions.

The added sr and pr registers together with the shadow register bank are shown
in Figure 7.1.
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x0/zero

x1/ra

x2/sp
...

x31/t6

XLEN − 1 0

pr

XLEN − 1 0

pc

XLEN − 1 0

xs1

xs2
...

xs31

XLEN − 1 0

sr

11 0

signature

/
28

/
28

dest

Figure 7.3: The operation of the Checkpoint Immediate (CPI) instruction.

7.2.3 Checkpoint Immediate Instruction

imm[11:0] rs funct3 rd opcode

31 20 19 15 14 12 11 7 6 0

12 5 3 5 7
signature 00000 CPI dest OP-CPI/PAR

Figure 7.2: The encoding of the Checkpoint Immediate (CPI) instruction, using
the I-type instruction format.

The Checkpoint Immediate (CPI) instruction is used to create a checkpoint in
the program. Its encoding is shown in Figure 7.2. The instruction is encoded
as an I-type instruction defined by the major opcode OP-CPI/PAR and minor
opcode CPI. It takes a 12-bit immediate value (signature) and a 5-bit register
specifier (dest) as operands.

As illustrated in Figure 7.3, the CPI instruction will perform three actions when
executed:

• The values of the register bank x1-x31 will be written to the shadow
register bank xs1-xs31;

• The immediate value signature will be written to the special purpose
register sr;
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Table 7.2: Using the cpi mnemonic in assembly to create a checkpoint.

Example Description
cpi t1, 0x123 Create a checkpoint with signature 0x123 and save the

signature value to register t1.
cpi 0x123 Equivalent to cpi zero, 0x123. Create a checkpoint with

signature 0x123. Do not save the signature value to a
general-purpose register.

• The immediate value signature will be written to the register specified
by dest. If dest selects x0 (zero), this action will not be performed.

Table 7.2 shows how the CPI instruction can be used in assembly language using
the cpi mnemonic, followed by the destination register and the signature value.
Alternatively, a pseudo-instruction can be used where the destination register is
omitted. In this case, register x0 (zero) will be selected, meaning the immediate
value will not be saved to a general-purpose register.

7.2.4 Parity Instruction

imm[11:0] rs funct3 rd opcode

31 20 19 15 14 12 11 7 6 0

12 5 3 5 7
000000000000 00000 PAR dest OP-CPI/PAR

Figure 7.4: The encoding of the Parity (PAR) instruction, using the I-type
instruction format.

The Parity (PAR) instruction is used to calculate the parity of the register values.
The instruction is encoded as an I-type instruction, as shown in Figure 7.4.
It uses the same opcode as the CPI instruction (OP-CPI/PAR) but with the
minor opcode PAR. As operands, the PAR instruction only takes a 5-bit register
specifier (dest).

When executed, the PAR instruction will perform two actions, as shown in
Figure 7.5:

• An exclusive or operation will be performed on the values of the register
bank x1-x31 and the parity register pr. The result will be written back to
the parity register pr;
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x0/zero

x1/ra

x2/sp
...

x31/t6

XLEN − 1 0

pr

XLEN − 1 0

pc

XLEN − 1 0

xs1

xs2
...

xs31

XLEN − 1 0

sr

11 0

signaturedest

/
32

/
28

Figure 7.5: The operation of the Parity (PAR) instruction.

Table 7.3: Using the par mnemonic in assembly to calculate the parity of the
register.

Example Description
par t1 Calculate the parity of the register values and save the result to

register t1.
par Equivalent to par zero. Calculate the parity of the register

values. Do not save the result to a general-purpose register.

• The result of the above exclusive or operation will also be written to the
register specified by dest. Similarly to the CPI instruction, if dest selects
x0 (zero), this action will not be performed.

To use the PAR instruction in assembly, the par mnemonic should be used
followed by the destination register. This is shown in Table 7.3. Similarly to
the CPI instruction, a pseudo-instruction can be used to omit the destination
register, in which case the result will not be saved to a general-purpose register.

7.2.5 Re-execute Immediate Instruction

The Re-Execute Immediate (REI) instruction is used to re-execute parts of
the program from a checkpoint. For its encoding, Xpdetector defines a new
instruction format. This format, called the U0-type instruction format, is
based on the U-type format, but omits the rd field, creating room for a 25-bit
immediate field imm[31:7].
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x0/zero

x1/ra

x2/sp
...

x31/t6

XLEN − 1 0

pr

XLEN − 1 0

pc

XLEN − 1 0

xs1

xs2
...

xs31

XLEN − 1 0

sr

11 0

= ?signature
+

offset << 1

/
28

Figure 7.7: The operation of the Re-Execute Immediate (REI) instruction.

imm[31:20] imm[19:7] opcode U0-Type

31 20 19 7 6 0

12 13 7
signature offset[13:1] OP-REI

Figure 7.6: The encoding of the Re-Execute Immediate (REI) instruction, using
the new U0-type instruction format.

Figure 7.6 shows this new U0-type instruction format while used to encode the
REI instruction. The instruction uses the major opcode OP-REI and uses the
25-bit immediate field to encode two immediate operands: a 12-bit signature
value (signature) and a 13-bit signed offset value (offset).

The REI instruction is a conditional instruction. It will only re-execute the
program if the signature value in the special purpose register sr matches the
signature value in the signature immediate field. If the signatures do not
match, the instruction will behave as an NOP (no operation) instruction. If
the condition is met, the instruction will perform three operations, shown in
Figure 7.7:

• The values of the shadow register bank xs1-xs31 will be written back to
the register bank x1-x31;

• The signature register sr will be cleared;

• The program counter will be incremented by the offset multiplied by
two (i.e. shifted left one bit).
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Table 7.4: Using the rei mnemonic in assembly to re-execute parts of the
program.

Example Description
rei 0x123, -0x456 Conditionally re-execute from the address 0x456

before the program counter
rei 0x123, myLabel Conditionally re-execute from the location indicated

by myLabel

rei 0x123, 5b Conditionally re-execute from 5 instructions before
the program counter

Since the offset field is shifted to the left by one bit, it is interpreted as a 14-bit
signed offset value. This enables the REI instruction to jump to any address
within a ±8 KiB range. To put this into perspective, the conditional branch
instructions in the RV32I base ISA have an address range of ±4 KiB.

To use the REI instruction in assembly, the rei mnemonic should be used
followed by the signature value and the signed offset value. This is shown in
Table 7.4. A pseudo-instruction can be employed where a text label is used in
place of the offset value. Alternatively, numeric labels can be used to specify
a relative offset. These are suffixed with f for a forward reference or b for a
backward reference.

7.2.6 Parity Zero And Link Instruction

[20] imm[10:1] [11] imm[19:12] rd opcode

31 30 21 20 19 12 11 7 6 0

1 10 1 8 5 7
offset[20:1] dest OP-PZAL

Figure 7.8: The encoding of the Parity Zero And Link (PZAL) instruction, using
the J-type instruction format.

The Parity Zero And Link (PZAL) instruction is used to verify that the parity is
equal to zero and jump to an error handler if it is not. Its encoding is shown in
Figure 7.8. The instruction is encoded as a J-type instruction using the major
opcode OP-PZAL. It takes two operands: a 20-bit signed offset value (offset)
and a 5-bit register specifier (dest).
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x0/zero

x1/ra

x2/sp
...

x31/t6

XLEN − 1 0
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Figure 7.9: The operation of the Parity Zero And Link (PZAL) instruction.

The PZAL instruction is a conditional instruction that executes if the parity
register pr is not zero. If the condition is met, the instruction will perform the
two operations shown in Figure 7.9.

• The program counter will be incremented by the offset multiplied by
two (i.e. shifted left one bit);

• The address of the instruction following the jump (pc+4) will be written
to the register specified by dest. If x0 (zero) is specified as the destination
register, this action will not be performed.

Since the offset field is shifted to the left by one bit, it is interpreted as a
21-bit signed offset value. This enables the PZAL instruction to jump to any
address within a ±1 MiB range. This is the same range as the unconditional
jump (JAL instruction in the RV32I base ISA).

An alternative encoding to this instruction could use the I-type instruction
format that reuses the OP-CPI/PAR major opcode but with a different minor
opcode. This would reduce the width of the offset field to 12 bits, reducing
the range to ±4 KiB, and would reduce the number of major opcodes used by
the extension. Moreover, this would enable the Xpdetector extension to be
implemented on the RV128I base ISA.

There are two ways to use the PZAL instruction in assembly, as shown in Table 7.5.
The first way is to use the pzal mnemonic followed by the destination register
and the signed offset value. Using the instruction in this way makes it act like a
function call, saving the return address in the destination register. Similarly to
the REI instruction, a pseudo-instruction using a text label or a numeric label
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Table 7.5: Using the pzal mnemonic in assembly to verify that the parity
register is zero and jump to an error handler if it is not.

Example Description
1. Parity Zero And Link

pzal t1, -0x456 Jump to the error handler at the address 0x456 before
the program counter if the parities are not equal. Use
register t1 as the link register.

pzal t1, mylabel Jump to the error handler at the location indicated by
mylabel if the parities are not equal. Use register t1 as
the link register.

pzal t1, 5b Jump to the error handler at 5 instructions before the
program counter if the parities are not equal. Use
register t1 as the link register.

pzal 5b Equivalent to pzal ra, 1b. Jump to the error handler
located 5 instruction before the program counter if the
parities are not equal. Use the default link register ra.

2. Parity Zero
pz -0x456 Jump to the error handler at the address 0x456 before

the program counter if the parities are not equal. Do
not save the return address.

pz mylabel Jump to the error handler at the location indicated by
mylabel if the parities are not equal. Do not save the
return address.

pz 5b Jump to the error handler located 5 instructions before
the program counter if the parities are not equal. Do
not save the return address.
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BB0: addi a2, a0, -1
addi a6, a1, -1
add a2, a2, a1
blez a1, BB7

BB1: mv a5, a0
blez a6, BB5

BB7: ret BB2: lbu a4, 0(a5)
lbu a3, 1(a5)
bleu a4, a3, BB4

BB3: sb a3, 0(a5)
sb a4, 1(a5)

BB4: addi a5, a5, 1
bne a5, a2, BB2

BB5: addi a6, a6, -1
addi a5, a2, -1
beq a0, a2, BB7

BB6: mv a2, a5
j BB1

Figure 7.10: The control flow graph of the bubble sort algorithm in RV32I
assembly. The vulnerable sections are colored gray.

in place of the offset value. When the pzal mnemonic is used the destination
register can be omitted to use x1, the register generally used to store the return
address.

The second way is to use the pz (verify) mnemonic followed by the signed offset
value. In this case, the destination register is omitted, but x0 (zero) is used
as the destination register, meaning that pc+4 will not be saved. Using the
instruction in this way makes it act like a conditional branch instruction.

This use of pseudo-instructions is similar to the JAL (jump and link) instruction
in the RV32I base, which can be used as a function call using the jal mnemonic
or as a normal jump using the j mnemonic [86].

7.2.7 Example Usage

To illustrate how the instructions of the Xpdetector extension can be used to
implement the P-DETECTOR SIHFT technique, the same bubble sort program
as in Chapters 4 and 5 will be used. However, this time, the program is written
in RISC-V assembly language. The control flow graph of the bubble sort
program in RV32I assembly language is shown in Figure 7.10. The vulnerable
sections are colored gray. Since a different instruction set architecture and
accompanying toolchain is now used to compile the program, there are notable
differences from the CFG in ARMv7-M assembly from Chapter 4.

Figure 7.11 shows the P-DETECTOR technique implemented on the bubble
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CP0: cpi sig0

PS0: addi a2, a0, -1
addi a6, a1, -1
add a2, a2, a1
blez a1, RE7

BB1: mv a5, a0
blez a6, BB5

RE7: par
rei sig0, PS0

rei sig3, PS3

pzal errorHandler

V S7: ret

BB2: lbu a4, 0(a5)
lbu a3, 1(a5)
bleu a4, a3, PS3

RE3: par
rei sig0, PS0

rei sig3, PS3

pzal errorHandler

V S3: sb a3, 0(a5)
sb a4, 1(a5)

CP3: cpi sig3

BB5: addi a6, a6, -1
addi a5, a2, -1
beq a0, a2, RE7

PS3: addi a5, a5, 1
bne a5, a2, BB2

BB6: mv a2, a5
j BB1

Figure 7.11: The P-DETECTOR technique implemented on the bubble sort
algorithm in RV32IXpdetector assembly.

sort program using the Xpdetector extension. The program starts by creating
a checkpoint at the beginning of the program using the CPI instruction at
label CP0. The initial values of the registers are saved to the shadow register
bank and the signature register is set to the value sig0.

Next, the program executes until it reaches one of the re-execution points
(labels RE3 or RE7). At these points, the program calculates the parity of the
register values using the PAR instruction. The result of this operation is stored
in the parity register. Next, the first conditional REI instruction is executed.
The signature register is compared against the signature value sig0. Since the
signatures match, the REI instruction will restore the register values from the
shadow register bank, clear the signature register, and jump back to the start
of the protected section at label PS0. This starts the second execution cycle.

In an error-free run, the program ends up back at the same re-execution point
(labels RE3 or RE7). The parity of the register values is once again calculated,
resulting in the parity register containing zero if no errors occurred. Since
the signature register was cleared at the end of the first execution cycle, the
conditional REI instructions will act as NOP instructions. Finally, the PZAL
instruction at the end of the re-execution points is executed. This instruction
will verify that the parity register is zero, calling an error handler defined by
the errorHandler text label if it is not. Otherwise, the vulnerable section is
entered.

Comparing the implementation with the Xpdetector extension in Figure 7.11 to
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CP0A: jal G, pushAll
li G, sig0
j PS0

CP0B : jal G, calculateParity
jal G, popAll
li G, 0

PS0: addi a2, a0, -1
addi a6, a1, -1
add a2, a2, a1
blez a1, RE7

BB1: mv a5, a0
blez a6, BB5

RE7: beqz G, RE7B

RE7A: addi G, -sig0
beqz G, CP0B

addi G, sig0 − sig3
beqz G, CP3B

RE7B : jal G, calculateParity
bnez G, errorHandler

V S7: ret

BB2: lbu a4, 0(a5)
lbu a3, 1(a5)
bleu a4, a3, PS3

RE3: beqz G, RE3B

RE3A: addi G, -sig0
beqz G, CP0B

addi G, sig0 − sig3
beqz G, CP3B

RE3B : jal G, calculateParity
bnez G, errorHandler

V S3: sb a3, 0(a5)
sb a4, 1(a5)

CP3A: jal G, pushAll
li G, sig3
j PS3

CP3B : jal G, calculateParity
jal G, popAll
li G, 0

BB5: addi a6, a6, -1
addi a5, a2, -1
beq a0, a2, RE7

PS3: addi a5, a5, 1
bne a5, a2, BB2

BB6: mv a2, a5
j BB1

Figure 7.12: The P-DETECTOR technique implemented on the bubble sort
algorithm in RV32I assembly.

the implementation on the base RV32I ISA in Figure 7.12 already shows that far
fewer instructions are needed when using the extension. However, not shown in
Figure 7.12 is the implementation of the pushAll, popAll and calculateParity
subroutines that are used by the P-DETECTOR technique. The pushAll and
popAll subroutines add 29 static instructions each, and the calculateParity
subroutine adds 28 static instructions.

Notice as well that the implementation of P-DETECTOR on Figure 7.12 differs
significantly from the implementation shown in Chapter 5. This is because
the RISC-V implementation of the DETECTOR family of techniques use an
alternative implementation. This will be discussed in more detail in Chapter 8.

7.3 Impact Analysis

Since the Xpdetector extension is described at the ISA level, its hardware
implementation is left to the hardware designer. This also means that the
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number of cycles required to execute each instruction is not defined by this
specification.

In the best case, each instruction would be executed in a single clock cycle.
However, this might be unfeasible for faster clock cycles due to the complexity
of some instructions. Therefore, it is only possible to provide an estimation of
the number of instruction cycles added for each executed vulnerable section.
For each vulnerable section, the number of added instruction cycles can be
calculated as follows:

I+
V SXpdetector

= 2IP AR + IREI + ICP I + C + 1 (7.1)

where {IP AR, IREI , ICP I , C ∈ N}

In Equation (7.1), IP AR, and ICP I are the number of added instruction cycles
for the PAR and CPI instructions, respectively. IREI is the number of added
instruction cycles for the REI instruction when the condition (signature = sr) is
met. Like before in Chapter 5, C depends on the number of possible re-execution
paths for a single vulnerable block. Appendix B.4 provides a more detailed
explanation of how Equation (7.1) is derived.

In the best-case scenario, all added instructions would be executed in a single
clock cycle, resulting in I+

V SXpdetector
= 5 + C. In a more realistic scenario, the

PAR instruction could, for example, take 4 instruction cycles, the CPI instruction
1 cycle, and the REI instruction 2 cycles, meaning I+

V SXpdetector
= 12 + C.

7.4 Changes to the GNU Assembler

The assembler takes the assembly language code and translates it into binary
machine code. Therefore, the assembler must be aware of the new instructions
defined by the Xpdetector extension before they can be used in assembly
code. This can be achieved by extending the assembler to recognize the new
mnemonics and encode them into the binary format. To realize this, the GNU
Assembler (GAS) of the RISC-V C/C++ cross-compiler has been extended to
support the Xpdetector extension.

To add the required instructions to the assembler, two parts of the GNU
assembler have been modified. The first part is the opcode library, which defines
the encoding of the RISC-V instructions. For the Xpdetector instructions which
use the default instruction formats (CPI, PAR, and PZAL), this step is sufficient.
However, for the REI instruction, the custom U0-type instruction type was used,
meaning the assembler’s encoding function was also extended.
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Custom Processor Model

Morpher
Library

Attributes
Decoder Disassembler

Figure 7.13: The components of a custom processor model using the Imperas
SDK.

7.5 Validating the Risc-V Extension Through
Simulation

To validate the Xpdetector extension, its behavior was implemented using the
Imperas SDK, extending the OVPsim RISC-V model [67]. Using the Imperas
SDK, a custom instruction can be implemented using a custom processor model
as an intercept library. This entails that the custom processor model is used
as an extension of the parent processor model. Figure 7.13 shows the four
components defined in the custom processor model:

• The decoder is responsible for decoding the binary formatted instruction
using a decoding table.

• The morpher defines the behavior of the instruction. This function can
be written using the OVP VMI Morph Time API [87].

• The library attributes encapsulate all required information about the
library to interact with the Imperas simulator products.

• The disassembler defines the string representation when disassembling
the instructions. This component is optional.

This intercept library is compiled as a shared object file that can be added
to the Imperas instruction set simulator at runtime. Its behavior is shown in
Figure 7.14. For every fetched instruction, the ISS decoder will be called. If the
instruction is not recognized, the instruction will be decoded and executed by
the parent processor model. Otherwise, the Morpher of the custom model will
be called to simulate the instruction.

For the implementation of the Xpdetector extension, OVP’s RV32I processor
model was used as the parent processor model [88], thus creating an
RV32IXpdetector model.



EVALUATION 97

Decode instruction
Decode using

parent processor model

Get morph function
and attributes

Execute morph
function

Next instruction

[
instruction

not recognized

]

[
instruction
recognized

]

Figure 7.14: The behavior of the intercept library in the Imperas ISS.

7.6 Evaluation

To validate the effectiveness of P-DETECTOR on the RV32IXpdetector ISA,
five case studies were evaluated using the Imperas ISS: BC, BS, CRC, MM, and
QS. Additionally, the P-DETECTOR technique was also implemented on the
base RV32I ISA to evaluate the effect of the hardware support provided by the
Xpdetector extension.

7.6.1 Fault Injection Results

The results of the single-bit CFE and DFE fault injection campaigns are shown
in Figures 7.15 and 7.16. The results indicate that the version using the
Xpdetector extension performs slightly worse than the implementation on the
base RV32I ISA in both error detection ratio and SDC ratio. This is because
in the implementation with the native RV32I ISA, many more instructions are
added to the program to implement the P-DETECTOR technique. CFEs or
DFEs within these instructions are likely to be detected by the P-DETECTOR
mechanism. Moreover, even if they are not detected, they are unlikely to affect
the program result and thus do not result in an SDC.
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Figure 7.15: Boxplots of the CFE single-bit fault injection results performed on
the BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR on
the RV32I and RV32IXpdetector ISAs, showing the error detection ratio and
SDC ratio.

0% 50% 100%

Xpdetector

P-DETECTOR

unprotected

SWD SDC Median Mean

Figure 7.16: Boxplots of the DFE single-bit fault injection results performed on
the BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR on
the RV32I and RV32IXpdetector ISAs, showing the error detection ratio and
SDC ratio.

7.6.2 Overhead Evaluation

As mentioned in Section 7.3, the number of cycles required to execute each
instruction is not defined by the specification, nor is it specified in the simulator
model. However, the execution time overhead can be estimated by analyzing
the execution trace of each case study and assigning an expected number of
cycles for each instruction. For this, the following rules have been used:

• Each branch instruction takes two instruction cycles when the branch is
taken and one cycle when it is not.

• Each memory access instruction takes three instruction cycles.

• All other instructions take one instruction cycle.
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Figure 7.17: The Code Size Overhead (CSO) and estimated Execution Time
Overhead (ETO) of P-DETECTOR on the RV32I and RV32IXpdetector ISAs
for each evaluated case study.

This is a simplification of the actual execution time, but it provides a rough
basis to estimate the ETO. For the custom instructions, both the best case
scenario (i.e. all instructions take one cycle) and a more realistic scenario (i.e.
PAR takes four cycles, REI takes two cycles, and the other instructions take one
cycle) were evaluated.

The (estimated) ETO and CSO of the P-DETECTOR technique on the RV32I
and RV32IXpdetector ISAs are shown in Figure 7.17. For the implementation
with the Xpdetector extension, the difference between the best-case scenario
and the more realistic scenario is also shown. As expected, both the CSO and
ETO of the implementation with the Xpdetector extension are much lower than
the implementation on the RV32I base ISA, both for the best-case and more
realistic scenario.

Notice also that the code size overhead of the RV32I base ISA can become quite
large for some case studies. This is because RISC-V does not support store
multiple and load multiple instructions, where multiple registers are stored or
loaded using a single instruction. Hence, the push and pop to the shadow stack
was implemented using two subroutines that store or load the registers one by
one. This has a large effect on the CSO for small case studies since the size of
these subroutines is large compared to the size of the case study. Since the push
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and pop instructions are replaced by the custom instructions in the Xpdetector
extension, this effect is not present in the implementation using the Xpdetector
extension.

7.7 Challenges for Micro-Architectural Verification

While the development of a RISC-V extension may be relatively quick, it is not
easy to formally verify it. In an interview with Semiconductor Engineering [89],
Pete Hardee, group director for product management at Cadence says:

RISC-V is an open ISA. Anyone can take it and implement a
processor. But the leaders in the RISC-V market know that
just because they do not need to pay license royalties, it doesn’t
mean RISC-V is the cheap option. There can be no shortcuts for
verification if you want to be successful with RISC-V.

The complexity of verifying the micro-architecture can be a significant hurdle
for the development of a new RISC-V extension. Even more so for processor
verification than for ASIC verification, Hardee continues:

It’s harder. Remember, the AS in ASIC stands for application-
specific. Fully verifying a chip for its intended application is finite
and bounded. Processor verification is not. Every operation in the
processor instruction set architecture must be verified to provide
the specified behavior in every eventuality — every combination
of instructions. In general-purpose applications, that cannot be
predicted at the time of verification of the processor IP.

This challenge is recognized by the RISC-V foundation and the community, with
multiple ongoing efforts to standardize, speed up and simplify the verification
process. For example, Davidmann et al. [90] illustrate the approach of using
a random instruction generator for RISC-V to compare implementation RTL
against a reference simulation model. Other efforts include the CORE-V-Verif
functional verification project for the CORE-V family of RISC-V cores [91]
and the RISC-V Verification Interface (RVVI) draft open standard defining
interfaces required to bring together several of the subsystems required for
RISC-V processor design verification [92].
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7.8 Conclusion

This chapter explored how a custom RISC-V extension can be used to support
SIHFT techniques. This can be useful for improving the performance of the
technique while keeping the flexible nature of SIHFT techniques.

To illustrate this concept, the Xpdetector extension was developed, which
includes four custom instructions (CPI, PAR, REI, and PZAL) designed to facilitate
the P-DETECTOR technique. The instructions’ encoding, operation, and usage
at the assembly level were described. The extension leverages two additional
special-purpose registers and a duplicated register bank to provide the re-
execution and assertion mechanism of P-DETECTOR.

The Imperas SDK was used to simulate the Xpdetector extension, enabling
the evaluation of the P-DETECTOR technique on the RV32IXpdetector ISA.
These simulation results demonstrated that the Xpdetector extension performs
similarly to the base RV32I ISA in terms of error detection and SDC rates,
with the base ISA showing slightly better results, mainly due to a difference in
fault-space coverage. Comparing the overhead of P-DETECTOR on the base
ISA and the extended ISA confirms that the Xpdetector extension significantly
reduces the overhead of the technique, both in terms of ETO (from averagely
×4.5 to ×1.9) and CSO (from averagely ×6.5 to ×1.4).

The development and verification of these custom extensions pose significant
challenges. The complexity of verifying the micro-architecture of a processor
with these extensions is notably high, even when compared to the development
of ASIC SoCs. Ongoing efforts within the RISC-V community, aim to address
these challenges and streamline the verification process. This will hopefully
reduce the threshold for developing custom RISC-V extensions and encourage
the adoption of custom processors in the industry.

In summary, custom RISC-V extensions for SIHFT techniques may present a
feasible method to enhance processor reliability. While the cost and complexity
of developing and verifying these extensions are high and pose a significant hurdle,
future efforts to standardize and simplify the verification process may help to
overcome these challenges, making hardware-supported SIHFT techniques a
viable option.





Chapter 8

A GCC Plugin to
Automatically Implement
SIHFT Techniques

Sections of this chapter are based on the work published in [99] and [102]. Since
publication of these papers, the structure of the GCC plugin has been altered
to make it more extendable and to support multiple ISA families. Hence, this
chapter reflects the latest version of the GCC plugin.

This chapter discusses how the implementation of SIHFT techniques can be
automated using a GCC plugin. First, Section 8.1 explains why a GCC plugin is
needed to automate the implementation of SIHFT techniques, points to the two
GCC plugins that have been developed by the M-Group research group, and
introduces the new SIHFT plugin that combines the functionality of these two
plugins and extends them to support multiple ISA families. Next, Section 8.2
explains how the plugin can be used, stipulating the plugin arguments and
function attributes used to indicate which functions should be protected by which
SIHFT technique. This is followed by a deeper delve into the inner workings of
the GCC plugin by first discussing at which intermediate representation level
the plugin operates in Section 8.3, and then explaining the structure of the
plugin in Section 8.4. Finally, Section 8.5 explains how the DETECTOR and
P-DETECTOR techniques are implemented in the plugin, before concluding
the chapter in Section 8.6.

103
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Figure 8.1: Manually implementing a SIHFT technique in assembly language is
a time-consuming and error-prone process.

8.1 Introduction to the Compiler Plugin

Throughout this thesis, the different techniques have been presented using ARM
and RISC-V assembly language. This is because SIHFT techniques do not
work optimally when implemented in high-level programming languages like
C or C++. For a start, the compiler optimizes the code, often removing the
redundant operations inserted by the SIHFT techniques. Research shows that
SIHFT techniques still work better when implemented in a language that is
close to machine code, even when taking the appropriate actions to disable these
optimization steps [59]. This is because the human-readable high-level source
code does not map one-to-one to the machine code. One high-level instruction is
often mapped to multiple machine instructions and the compiler often generates
a different control flow graph for the machine code than what the high-level
code might suggest.

While manually implementing SIHFT techniques in assembly language is
possible, it is a time-consuming and error-prone process. This process is shown
in Figure 8.1. First, the high-level application is compiled into assembly code.
Next, this assembly code should be analyzed to construct the control flow graph
of the application, after which the SIHFT technique can be implemented in
the assembly code. This process is very tedious and any mistake can result in
a badly implemented SIHFT technique or a broken application. Finally, the
changed assembly files can be compiled into the binary for the target device.
Whenever a change is made to the high-level application, the process must be
repeated from the beginning. This makes the manual implementation of SIHFT
techniques infeasible in practice.

To automate this process, two compiler plugins for the GCC compiler toolchain
had been developed in the past. The first plugin, developed by Vankeirsbilck et
al. [93] was created to automate the implementation of several CFED techniques.
This plugin was the base for the DFED plugin [94], which implements several
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Listing 8.1: Example showing how to compile a program using the GCC plugin.
gcc -fplugin=SIHFT_RISCV.so

-fplugin -arg -SIHFT -error=error_handler foo.c

Listing 8.2: The developer can indicate which functions should be protected
by which SIHFT technique using the SIHFT function attribute. Additional
parameters can be provided to indicate the selective level and provide any
additional options required by the technique.
void __attribute__ ((SIHFT("P-DETECTOR"))) foo() {

// Will be protected by P-DETECTOR
}
void __attribute__ ((SIHFT("SWIFT", 1))) bar() {

// Will be protected by S-SWIFT
}
void __attribute__ ((SIHFT("DETECTOR",1,"ra,sp"))) baz(){

// Will be protected by S-DETECTOR with protected
registers ra and sp

}

DFED techniques. Since the techniques discussed in this thesis are hybrid
techniques, these plugins have been combined into a single GCC plugin, capable
of implementing CFED, DFED, and hybrid SIHFT techniques.

Since the research of Vankeirsbilck and Thati focussed solely on ARM-based
systems, the CFED and DFED compiler plugins were created for the ARM ISA
family. This limits the use of these plugins to ARM-based systems. Therefore,
the combined plugin was crafted in such a way that it can be used to support
multiple ISA families [28].

8.2 Usage

The plugin can be loaded by providing the -fplugin argument during the
compilation process, providing the path to the shared object file of the plugin.
This is shown in Listing 8.1. Additionally, the function name of the error handler
to be called when a SIHFT technique detects an error must be provided using
the -fplugin-arg-SIHFT-error-handler argument.
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Listing 8.3: The function to which the initialization of the SIHFT technique
should be prepended can be marked using the SIHFT_INIT function attribute.
void __attribute__ (( SIHFT_INIT("DETECTOR"))) main() {

// Will contain the initialization of DETECTOR at the
start of the function

}

C

C++

Java

GENERIC GIMPLE RTL
machine
code

Plugin entry point

Front End Middle End Back End

Figure 8.2: The different intermediate languages of the GCC compiler toolchain
and the entry point of the GCC plugin.

The plugin uses custom function attributes to determine which functions should
be protected with which SIHFT technique. To indicate that a function must
be protected with a specific technique, the SIHFT(<technique>) attribute must
be added to the function declaration, providing the name of the technique
as a parameter. This is shown in Listing 8.2. When applicable, a selective
implementation can be selected by providing a selective level as the second
parameter. Since some techniques can require additional options, these can be
provided as well. For example, S-DETECTOR requires the list of registers to be
protected.

Finally, many techniques require an initialization process to set up the initial
values of the registers used by the technique. This initialization will be inserted
at the start of the function with the SIHFT_INIT function attribute. This is
shown in Listing 8.3.
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8.3 GCC Intermediate Representations

To compile a program from high-level source code to a binary executable, the
GCC compiler toolchain compiles the source code through several intermediate
languages, as depicted in Figure 8.2. The process starts in the front end of
the compiler, where the high-level source code is parsed and translated into
the GENERIC intermediate language. This is a language-independent tree
structure representation that serves as an interface between the parser and
optimizer. This GENERIC representation is then simplified to the GIMPLE
intermediate language for use in language-independent optimization passes in
the middle-end. Next, the GIMPLE representation is compiled further to the
Register Transfer Level (RTL) intermediate language. This low-level language
is very close to assembly language and is used for some final optimization passes
before it is translated to the target machine code in the backend layer of the
compiler.

GCC plugins – also called loadable modules, make it possible to add new
features to the GCC compiler without having to modify the compiler itself.
The developer of the plugin can specify after which compilation pass the plugin
should be executed. In the case of the SIHFT plugin, the entry point of the
plugin is located near the end of the RTL optimization pass, as shown in
Figure 8.2. By choosing this entry point, the RTL language is on a near one-to-
one mapping with the machine code, making it the ideal place to implement
SIHFT techniques.

8.4 Structure of the GCC Plugin

The GCC plugin API provides a set of functions that can be used by the plugin
to interact with the compiler. However, like different GCC compilers are needed
to compile code for different ISA families, different versions of the GCC plugin
API also exist for each of those targets. Therefore, a single compiler plugin can
only support one single ISA family.

To circumvent this limitation, the novel SIHFT plugin is designed as a single
codebase that can be compiled using different GCC plugin API versions for
each ISA family. Additionally, the plugin is compartmented into four distinct
components as shown in Figure 8.3.

• The Entry Point component contains the functionality to register the
plugin module to the GCC compiler at the correct entry point and a
callback function that is called by the compiler when the plugin is executed.
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Figure 8.3: The UML component diagram of the SIHFT GCC plugin.

• The Techniques component contains the functionality to implement the
supported SIHFT techniques.

• The Targets component contains the functionality to evaluate and insert
instructions into the RTL code.

• The Support Classes component provides various utility classes that
can be used by the other components.

These components will now be discussed in more detail.

8.4.1 Support Classes

The Support Classes component contains three static utility classes that can be
used by all other components. They are shown in Figure 8.4. The Arguments
and Attributes classes are used to obtain the plugin arguments and function
attributes, respectively. The ExportCfg class is used to export the details of the
CFG to a file in different formats. This can be useful for debugging purposes,
as it enables the developer of the plugin to inspect the CFG of a function to
verify that a SIHFT technique has been implemented correctly.
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Figure 8.4: UML class diagram of the Support Classes component.

Figure 8.5: UML class diagram of the Entry Point component.

8.4.2 Entry Point

The Entry Point component is, as the name suggests, the entry point of the
plugin. Its UML class diagram is shown in Figure 8.5. The Plugin_Init class
contains a single static method plugin_init. This method is called by GCC
at the start of the compilation process to initialize the plugin. During this
initialization, the SIHFT_Plugin class is instantiated and a callback is registered
to execute the plugin during the RTL optimization pass.

For each function, the gate method of SIHFT_Plugin class is called. This method
determines whether the plugin should be executed for the current function. For
this, it utilizes the Attributes class to determine if the function contains the
required SIHFT or SIHFT_INIT function attributes.

If gate returned true, the execute method is called. This method implements
the actual compilation pass of the plugin by using the functionality of the
Techniques component.
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Figure 8.6: UML class diagram of the Techniques component.

8.4.3 Techniques

The Targets component is used by the Techniques component to implement
the SIHFT techniques. Its UML class diagram is shown in Figure 8.6. Each
technique is represented by a class implementing the Technique interface. To
keep the diagram clear, only three techniques are depicted, namely RACFED,
DETECTOR, and P_DETECTOR. Since P-DETECTOR is based on the DETECTOR
technique, the P_DETECTOR class inherits from the DETECTOR class.

To instantiate a technique, the static Technique::create() method is called.
This method instantiates an object of the correct technique class based on the
technique name provided in the function attribute.

The interface defines two methods additional: implement and implementInit.
The implement method is used to implement the SIHFT technique, while the
implementInit method is used to implement the initialization of said technique.
These methods are used by the SIHFT_Plugin::implement() method of the
Entry Point component, as shown in Listing 8.4.



STRUCTURE OF THE GCC PLUGIN 111

Listing 8.4: The methods of the Technique interface are used to implement
and initialize the SIHFT technique in a function. Depending on the provided
function attributes, the provided technique is implemented and/or initialized.
unsigned int SIHFT_Plugin :: execute(function *fun) {

...
Technique* technique = Technique :: create ();
if (Attributes :: implement_technique ()) {

technique ->implement ();
}
if (Attributes :: init_technique ()) {

technique ->implementInit ();
}
...

}

Listing 8.5: The Emittor object can be accessed by calling the emit() method
of the ISA class. In this example, the Emittor::addReg() method is used to
insert an addition of two registers into the RTL code. The result shows the
assembly instruction that is compiled from the inserted RTL.
ISA isa = RV32I();
isa.emit()->

addReg(isa.reg(5), isa.reg (6), isa.reg(7), ...);
// result: add t0, t1 , t2

8.4.4 Targets

To implement the SIHFT techniques, the plugin must be able to insert
instructions into the RTL code. However, since the RTL code is a low-level
representation of the machine code, this RTL code is dependable on the ISA
of the target machine. Therefore, the Targets component is structured as the
inheritance hierarchy shown in Figure 8.7. Each target is represented by a class
that implements the ISA interface. By calling the static ISA::create() method,
an object of the correct ISA class is created.

The ISA interface defines various methods that can be used to get target-specific
information, such as information about which registers are available on the
target machine. Each ISA class also contains four helper classes that can be
used for various target-specific tasks.
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Figure 8.7: UML class diagram of the Targets component.
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Listing 8.6: The Support object can be accessed by calling the supports()
method of the ISA class. In this example, the Support::conditionRegInt()
method reveals that RV32I does not support comparting a register to an integer,
while ARMv7-M does.
ISA riscv = RV32I();
ISA arm = ARMv7M ();
riscv.supports ()->conditionRegInt (); // false
arm.supports ()->conditionRegInt (); // true

Listing 8.7: The InstructionType object can be accessed by calling the
instruction() method of the ISA class.
extern basic_block bb;
ISA isa = RV32I();
rtx_insn* insn = isa.locate ()->lastRealInsn(bb);
isa.instruction ()->isReturn(insn);

The Emittor interface defines methods to insert (emit) instructions into the
RTL code. For example, the moveInt method will insert an instruction that
inserts an integer value to a register. The Emittor interface is implemented by
the ARM_Emittor and RISCV_Emittor classes, which specify the implementation
for the ARM and RISC-V ISA families, respectively. These are in turn inherited
by the target-specific Emittor classes (RV64I, RV32I, ARMv6M, and ARMv7M) to
override methods where the RTL code of targets within the same ISA family
differ. The Emittor object can be obtained by calling the emit() method of the
ISA class like shown in Listing 8.5.

Not all ISAs support all types of instructions. For example, ARM targets
allow for a comparison between a register and an integer, while RISC-V targets
only support comparing two registers. Therefore, the Support interface defines
methods that can be used to check if an operation is supported by the target
ISA. Similarly to the Emittor interface, the Support interface is implemented by
the ARM_Support and RISCV_Support classes, which are inherited by the target-
specific support classes. To obtain the Support object, the supports() method
of the ISA class can be called, resulting in the syntax shown in Listing 8.6.

To obtain details of the instructions in the RTL code, the InstructionType
class can be used. For now, this class is not abstracted since its implementation
for all currently implemented ISAs is the same. This is also the case for the
Locator class, which can be used to locate specific instructions in the RTL
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code. The InstructionType and Locator objects can be obtained by calling
the instruction() and locate() methods of the ISA class, respectively. For
example, Listing 8.7 shows the code to check if the last instruction in a basic
block is a return instruction.

When the plugin is compiled for an ISA family, only the classes for that
ISA family (that use the GCC plugin API for that ISA family) are compiled.
This means that this single inheritance tree effectively creates separate Targets
components for each ISA family that are swapped out when compiling the plugin
for different ISA families. This creates a single highly extendable codebase that
can be used to support multiple ISA families.

8.5 Implementing the (P-)DETECTOR Technique

Since this thesis focuses on the novel DETECTOR and P-DETECTOR
techniques, this section discusses how these techniques are implemented in the
GCC plugin. As mentioned in Section 8.4.3, DETECTOR and P-DETECTOR
are implemented using the similarly named classes that implement the Technique
interface. Since the functionality of P-DETECTOR is similar to that of
DETECTOR, the P_DETECTOR class inherits most of its functionality from
the DETECTOR class.

The DETECTOR::implement() method performs three consecutive steps:

• Locating the Vulnerable Sections: the method searches for vulnerable
instructions within the code and groups them into vulnerbale sections;

• Finding the Checkpoints: for each vulnerable section, the CFG is
analyzed to determine from which checkpoints the section can be reached;

• Inserting the Instructions: the instructions to implement the
DETECTOR (or P-DETECTOR) technique are inserted into the RTL
code.

8.5.1 Locating the Vulnerable Sections

Algorithm 8.1 shows how the vulnerable sections are located in a program. The
algorithm iterates over every basic block (bb) in the function and over every
instruction in each basic block. A first instruction deemed vulnerable (line 6)
marks the start of a new vulnerable section (lines 7 through 9). As mentioned in
Chapter 4, memory write instructions, subroutine calls, and return instructions
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Algorithm 8.1 The algorithm used to find the vulnerable sections in a program.
1: vulnerableSections← [ ]
2: for all bb ∈ function do
3: vs, lastV s, lastCompare← ∅
4: vulnerableInsn← [ ]
5: for all instruction ∈ bb do
6: if instruction is vulnerable then
7: if vs = ∅ then
8: vs← new VulnerableSection(lastV s)
9: vs.setStart(instruction)

10: vs.addVulnerableInstruction(instruction)
11: if instruction is conditional then
12: vs.setStart(lastCompare)
13: if instruction is return then
14: vs.setExit(true)
15: if vs ̸= ∅ then
16: if instruction is not vulnerable or
17: instruction = bb.last() then
18: vulnerableSections.add(vs)
19: lastV s← vs
20: vs← ∅
21: if instruction is compare then
22: lastCompare← instruction

23: return vulnerableSections

are considered vulnerable instructions. This instruction and each consecutive
vulnerable instruction are added to this vulnerable section (line 10). If, however,
a vulnerable instruction is conditional, the instruction that sets the condition
flags (the lsatCompare variable set in lines 21 through 22) should be included
in the vulnerable section (lines 11 through 12). Additionally, the vulnerable
section gets marked as an exit section when an instruction in the vulnerable
section is a return statement (lines 13 through 14).

The next non-vulnerable instruction or the end of the basic block marks the end
of a vulnerable section (lines 15 through 20). This way, each vulnerable section
in each basic block is identified. Multiple vulnerable sections in one single basic
block follow a reversed linked-list data structure, where each vulnerable section
points to the previous vulnerable section within the basic block (lastV s, line 8).
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Figure 8.8: Finding the source vulnerable blocks using a control flow graph.

8.5.2 Finding the Checkpoints

As discussed in Chapter 4, a re-execution point is placed before each vulnerable
section and a checkpoint is placed after each vulnerable section. When reaching
a re-execution point during the first execution cycle, the program should jump to
the last visited checkpoint to start the second execution cycle. At compile time,
the plugin must therefore determine from which checkpoints each vulnerable
section can be reached.

Figure 8.8a shows a simplified control flow graph of a program. In this graph,
the basic blocks that contain one or more vulnerable sections are marked with
a double border. From now on, these will be referred to as vulnerable blocks.
For simplicity’s sake, the first basic block is also considered a vulnerable block,
although it might technically not be one.

For each vulnerable block, a recursive path analysis is performed to find all
possible paths between the vulnerable blocks. During this analysis, a source
tree is constructed, starting from a vulnerable block, following each incoming
edge until a vulnerable block is reached or until a basic block that has already
been traversed is encountered.

The source tree for vulnerable block 6 is shown in Figure 8.8b. The source
checkpoints of the first vulnerable section in a vulnerable block are the source
vulnerable blocks’ last vulnerable sections. All subsequent vulnerable sections in
the same vulnerable block have source checkpoints at the preceding vulnerable
section, using the reversed linked-list structure mentioned before.
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1: Compare G to 0
2: If equal,

jump to cmpCalli

3: Compare G to signaturesource 2

4: Push all registersprot onto S2

5: Pop all registers from S1

6: Move 0 to G

7: If lower,
jump to checkpointsource 1

8: If equal,
jump to checkpointsource 2

9: If higher,
jump to checkpointsource 3

10: Label cmpCalli:
11: Call subroutine “compare”

– VULNERABLE SECTION –

12: Push all registers onto S1

13: Move signaturei to G

14: Label checkpointi:

(a) Using separate compare and condi-
tional branch instructions.

1: Compare G to 0
2: If equal,

jump to cmpCalli

3: Compare G to signaturesource 1

4: If equal,
jump to checkpointsource 1

5: Compare G to signaturesource 2

6: If equal,
jump to checkpointsource 2

7: Compare G to signaturesource 3

8: If equal,
jump to checkpointsource 3

. . . repeat for each source

9: Label cmpCalli:
10: Call subroutine “compare”

– VULNERABLE SECTION –

11: Push all registers onto S1

12: Move signaturei to G
13: Jump to originali

14: Label checkpointi:

15: Push all registersprot onto S2

16: Pop all registers from S1

17: Move 0 to G

18: Label originali:

(b) Placing part of the re-execution code
after the vulnerable section.

Figure 8.9: Depending on which instructions are supported by the ISA and
how the CFG of the program is structured, the instructions to implement the
DETECTOR technique can be inserted in two different ways.

8.5.3 Inserting the Instructions

The final task is to insert the actual instructions to implement the DETECTOR
or P-DETECTOR technique. This is done by prepending and appending the
necessary instructions to each vulnerable section. There are two ways that this
can be achieved, depending on which instructions are supported by the ISA and
how the CFG of the program is structured. These two approaches are shown in
Figure 8.9 for the DETECTOR technique.

The first approach (Figure 8.9a) is the most straightforward. This is also the
version that was used in Chapter 4 to discuss how the DETECTOR technique
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works. All instructions for the re-execution point are prepended before each
vulnerable section. Notice that the compare instruction at line 3 is separate from
the conditional branch instructions at lines 7 through 9 since the instructions
inserted in lines 4 through 6 change the value stored in the G register.

There are two drawbacks to this approach. Firstly, not all instruction set
architectures provide separate compare and conditional branch instructions. For
example, the RISC-V ISAs combine the two into conditional branch instructions
with three operands: the two registers to compare and the label to jump
to. Secondly, this approach is only possible when each vulnerable section in
the program contains no more than three source checkpoints, since only the
conditions lower than, equal, or higher than can be used.

When the first approach is not possible, the SIHFT plugin switches to the
second approach, shown in Figure 8.9b. Here, the compare instructions can be
placed together (or if the ISA allows for it, they can be combined) by reordering
the instructions, placing part of the re-execution code after the checkpoint label.
By inserting an unconditional jump at line 13, the re-execution code inserted
after the vulnerable section is skipped during the first execution cycle.

8.6 Conclusion

This chapter described how the GCC plugin to support SIHFT techniques of
the M-Group research group was extended and refactored to support multiple
ISA families and how the DETECTOR, S-DETECTOR, and P-DETECTOR
techniques were implemented in this plugin. The plugin is designed to be highly
extendable and can be used to implement any low-level SIHFT technique. By
creating a single codebase that can be compiled for different ISA families, the
plugin can be used to implement SIHFT techniques for multiple ISA families.
The plugin supports various ARM and RISC-V architectures and is made to be
easily extendable to support other ISAs by implementing the provided interfaces.

The DETECTOR and P-DETECTOR techniques have been implemented in the
plugin in three separate steps to locate the vulnerable sections, find the source
checkpoints, and insert the necessary instructions. Two different approaches
are used to insert the instructions, depending on the supported instructions of
the ISA and the structure of the CFG of the program.



Chapter 9

Valorization

During this thesis, two components that hold direct economic value have been
developed, namely the GCC SIHFT plugin described in Chapter 8 and the Fault
Injection Frameworks described in Chapter 3. This chapter first discusses the
open-sourced GCC SIHFT plugin in Section 9.1, which can be used to easily
and quickly implement SIHFT techniques to protect their embedded systems
against soft errors. Next, Section 9.2 covers the fault injection frameworks,
which can be used by the industry to evaluate the resilience of their embedded
systems against soft errors. Together with the GCC plugin, they create a full
resilience framework that can be used by the industry to evaluate and enhance
the resilience of their embedded systems. Additionally, the research on the
RISC-V extension in Chapter 7 is the first step in the research of hardware-
supported SIHFT techniques and is therefore leverage for new fundamental
research projects. This is discussed in Section 9.3.

9.1 The GCC SIHFT Plugin

As mentioned in Chapter 8, the SIHFT plugin was developed to automate
the implementation process of low-level SIHFT techniques, as manually
implementing such techniques is infeasible. While the initial version of the
plugin was mainly developed for research ends, the possibility of using the plugin
in commercial applications was always considered. With the latest version of
the SIHFT plugin, which offers support for multiple ISAs, this commercial use
is more feasible than ever.
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The plugin allows any embedded developer using the GCC compiler toolchain to
implement a SIHFT technique, as long as their target instruction set architecture
is supported. By using this plugin in their compilation process, the industry
can create bitflip-resilient systems, giving them a competitive advantage in both
the national, and international markets. Moreover, the use of such resilience
techniques might aid companies to comply with functional safety standards to
which mission and safety-critical systems have to comply. For example, the
functional safety standard for road vehicles, ISO 26262, explicitly recognizes the
soft error problem and recommends the detection of data errors and recommends
control flow monitoring to be implemented.

The main market for SIHFT techniques is manufacturers of safety or mission-
critical embedded systems that need protection against soft errors. This might
be to comply with the aforementioned safety standards or to protect the systems
in an environment with high radiation. As mentioned in Chapter 1, transistor-
level and circuit-level mitigation against soft errors is very costly, often making
them a non-viable option for many companies. In these cases, SIHFT techniques
can be utilized instead. Additionally, SIHFT techniques can be implemented for
a subset of the program, meaning that the most critical parts of the program
can be protected, while other less critical parts can remain as-is, improving
speed and/or energy efficiency. Finally, SIHFT techniques can also be an option
for systems that suffer from high soft error rates but cannot be modified since
they are already deployed. This could, for example, be in space applications,
where a firmware update can be issued to combat errors as a result of ionizing
particles in space.

The GCC SIHFT plugin has been made available as an open-source project on
GitLab [28]. This repository includes a detailed guide on how to use the plugin
to implement the various techniques. Fellow researchers within the SIHFT
research domain are encouraged to implement their novel SIHFT techniques in
the plugin by submitting merge requests to the open-source repository. This
allows for greater transparency for all parties and allows for direct and unbiased
comparisons between different techniques, an important factor in the research
integrity of the field. This could also resolve possible erroneous interpretations of
the techniques, as implementing SIHFT techniques solely based on a description
in a published work can result in missed nuances and therefore less effective
implementations. Additionally, this would be beneficial for the industry since
this would increase the choice of SIHFT techniques.

While the latest version of the plugin can be used commercially, it is not
yet validated in a real-world scenario. Active research is being conducted on
methods to verify the correctness of the plugin [95], as this is an important yet
non-trivial task.
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Like all work derived from the GNU Compiler Collection, the SIHFT technique
is licensed under the GNU General Public Licence (GPL), which guarantees
end users the freedom to run, study, share, and modify the software. As per
the GPL licensing, the plugin is provided “as is”, without warranty of any kind,
either expressed or implied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The license holder is
in no event unless required by applicable law or agreed to in writing liable for
damages, including any general, special, incidental, or consequential damages
arising out of the use or inability to use the software.

While GCC is a widely used compiler toolchain, some developers use other
compilers, such as the Clang/LLVM Compiler Infrastructure. If there is industry
interest, a Clang plugin can be developed to further increase the reach of SIHFT
techniques.

9.2 Fault Injection Frameworks

The two fault injection frameworks discussed in Chapter 3 have been mainly
developed to evaluate the novel SIHFT techniques and compare them against
the SOTA. However, these frameworks, together with the previously discussed
GCC plugin, create a complete toolset to evaluate the resilience of embedded
systems against soft errors and to determine which SIHFT technique is the
best fit for a specific application. Using this toolset, along with the acquired
expertise in the past decade in this field, the KU Leuven M-Group can provide
a consultancy service in close cooperation with the industry. This service can
take place through several distinct user scenarios.

• Vulnerability-Only Service: Conduct a vulnerability assessment on an
embedded system and provide the results to the user.

• Suggestion Service: Assess the vulnerability of an embedded system
and assess how various SIHFT techniques improve the resilience of the
program. Provide the user with the results of this analysis, recommending
which SIHFT techniques are the most suitable, taking into consideration
the requirements of the end user.

• Microcontroller or ISA Resilience Service: For clients uncertain
about which microcontroller or ISA to choose for their project, this
service provides insights into the resilience of different candidates against
CFEs and DFEs. It is also useful for clients setting up a hardware
redundancy system, offering guidance on selecting the most resilient ISA
or microcontroller.



122 VALORIZATION

This envisions close cooperation with the industry through service agreements.
The cooperation would involve the industry providing the full embedded system,
including software and hardware to the M-Group, who will first, in close contact
with the client, determine the most suitable way to test the system. If a
hardware-in-the-loop simulator setup is chosen, a HIL simulator would be set
up in the M-Group lab, and the embedded system would be tested against the
various fault injection campaigns. If the suggestive service was chosen, multiple
SIHFT techniques would be applied to the target system, which would be tested
using the same fault injection strategies. Additionally, the overhead analysis
tools used in this research can be applied here to provide a full overview of
the capabilities and impact of each SIHFT technique. Thus, by combining
the toolsets developed in this research, the M-Group can provide a complete
framework to the industry to evaluate and enhance the resilience of its embedded
systems.

In a later phase, the M-Group’s consultancy status can be further expanded
by providing a cloud platform and different licensing models in the form of
a Software as a Service (SaaS) model. In this model, clients would be able
to upload their embedded software to the platform for resilience testing and
assessment based on the scenarios outlined above. This approach has the
potential to attract new clients who may not have been reached through the
initial service agreement plan while ensuring that intellectual property remains
in-house.

Alternatively, the developed tools could be made commercially available to
be purchased or licensed. This reduces the active role of the M-Group, while
still providing the industry with the tools to evaluate the resilience of their
embedded systems.

The commercialization and licensing of the tools developed in this thesis, as well
as the establishment of potential service agreements, will be done in discussion
with the KU Leuven Research & Development department. Since all tools
used in this research are developed in-house, KU Leuven owns all IP related to
the fault injection frameworks. However, the simulation-based fault-injection
framework uses the Imperas Instruction Set simulator, which has been licensed
to KU Leuven for research use only. If the simulated fault-injection framework
were to be used commercially, a commercial licensing agreement has to be made
with Imperas Software Ltd.

In the context of the FIRES research project [96], seven letters of interest have
been received from companies interested in the envisioned framework. These
companies are from various domains, including agriculture, healthcare, IoT
systems, and large machinery, showing a broad interest in the developed tools.
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9.3 RISC-V Extension

While the previous two sections discussed the direct economic value of the
developed tools, the valorization of the RISC-V extension is more focused on
the leverage to future fundamental research projects. The RISC-V extension
explored in this thesis is the first step in the research of hardware-supported
SIHFT techniques. Further research in this domain could reveal the true value
of such hardware-supported techniques.

The Computer Science and Electrical Engineering Departments of KU Leuven
have the capacity and know-how of both SIHFT techniques and (RISC-V)
hardware development to further research this domain. For example, the RISC-V
extension can be implemented on the Proteus code [79] of the KU Leuven
DistriNet research group, an easily configurable RISC-V CPU implemented in
SpinalHDL. This would reveal the implementation effort needed to implement
the ISA extension in hardware and can provide an insight into the performance
overhead of the extension. Together with the partners of KU Leuven, such as
the Interuniversity Micro-Electronics Center, Imec, new research projects can
be set up to further research this novel domain.

The IP of a RISC-V implementation can be retained by KU Leuven if so desired.
However, if the implementation of the extension is based on an existing model,
the IP rights of the original model have to be respected.





Chapter 10

Directions for Future Work
and General Conclusions

This chapter concludes this thesis by first providing some possible future work
that can be done to improve the (P-)DETECTOR technique, as well as further
research opportunities that can be explored regarding hardware-supported
SIHFT techniques by using extendable architectures like RISC-V in Section 10.1.
The chapter concludes with some closing remarks in Section 10.2, reflecting on
the research objectives and the contributions made in this thesis.

10.1 Future Work

10.1.1 Borrowing Ideas from Signature Monitoring

The (P-)DETECTOR technique uses a single signature variable to keep track of
the checkpoints from which the program parts must be re-executed. This variable
is updated to a compile-time signature every time a checkpoint is reached and
zeroed out when the program starts the re-execution of the program. It is
however not used for any detection mechanism. This is where the control flow
error detection capabilities of the (P-)DETECTOR technique can be improved
by incorporating small signature-checking mechanisms throughout the program.

Other ideas can also be borrowed from signature monitoring techniques, like
the fact that signatures are often not merely assigned, but updated throug
addition [38] or exclusive or operations [31]. Because of this, a corrupted
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. . .
G ← signature0

Program code

. . .
G ← 0

. . .

Vulnerable section

. . .

CFE

(a) The current implementation of
(P-)DETECTOR updates the signature
register G by assigning the new values.
A CFE to the re-execution can remain
undetected.

. . .
G ← G + signature0

Program code

. . .
G ← G − signature0

G == 0

. . .

Vulnerable section

. . .

CFE

(b) A possible improvement would be to
update the signature register by addition
and subtraction & verifying the signature
value. The previously undetected CFE
is now detected by the new signature
assertion.

Figure 10.1: Borrowing ideas from signature monitoring techniques can improve
the (P-)DETECTOR technique.

register variable is not just overwritten, causing more errors to be caught by
the signature-checking mechanism.

Figure 10.1 shows how combining a signature-checking mechanism with the
signature updates trough addition could result in an improved control flow
error detection mechanism for the (P-)DETECTOR technique. A CFE to a
re-execution point could remain undetected in the current implementation of
P-DETECTOR, like shown in Figure 10.1a. The same CFE is detected in
Figure 10.1b. Here, the signature register G is updated to zero by subtracting
the expected signature (signature0). If a CFE from another part of the program
(i.e. with a different signature in G) occurs, this operation will not result in G
being zero. The new signature assertion will detect this, triggering the error
handler.

10.1.2 From Error Detection to Error Correction

While some techniques, like SWIFT-R and TRUMP [46], have incorporated
error correction mechanisms, the focus of SOTA SIHFT techniques mainly
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revolve around error detection, relying on the programmer’s implementation
of the error handler to recover from the error or to put the system in a safe
state. This is because, for traditional DFED and hybrid techniques, the error
correction mechanism relies on instruction triplication and utilizing a majority
voting mechanism to determine the correct register values. This means that
not one but two shadow registers are required for every register used in the
program to store the redundant values. Therefore, the available registers for
the program is reduced to a third of the original amount, making the register
availability issue mentioned in Chapter 2 even more severe.

A possible error correction mechanism for (P-)DETECTOR could be to re-
execute the part of the program that caused the error for a third time, therefore
rewriting a corrupted register with a correct value. This mechanism would not
require any additional registers and would not further impact the performance
of the program, as the third re-execution would only occur when an error is
detected. This mechanism could be examined in future research to determine
its effectiveness in automatically correcting errors caused by bitflips.

10.1.3 Synthesizing the RV32IXpdetector Core

In Chapter 7, the possibility to create specialized cores for SIHFT techniques by
using RISC-V extensions was explored by defining an Xpdetector ISA extension
that introduces specialized instructions for the P-DETECTOR technique. The
extension was tested by creating a simulator model for the RV32IXpdetector
core, to perform fault injection experiments on five case studies, evaluating
the effectiveness of the P-DETECTOR technique on the extended architecture.
The next step in this research would be to synthesize the RV32IXpdetector core
on an FPGA to evaluate the effort required to implement the ISA extension
in hardware and to determine the real performance impact of P-DETECTOR
when used with the extension.

To implement the Xpdetector extension, an extendable RISC-V FPGA
implementation like the Proteus Core [79] could be used. This RV32IM
SpinalHDL model uses a system of plugins to make the processor easily
configurable and extensible, making the development and testing of hardware
features easier.



128 DIRECTIONS FOR FUTURE WORK AND GENERAL CONCLUSIONS

10.1.4 Further Research on Hardware-Supported SIHFT
Techniques

While Chapter 7 explored the idea of using RISC-V extensions to create
specialized cores for SIHFT techniques, this has only been applied this to the
P-DETECTOR technique. Further research can be performed to explore the
possibilities of using RISC-V extensions to support other SIHFT techniques or
categories of SIHFT techniques. For example, instruction monitoring techniques
or signature monitoring techniques could be supported by introducing specialized
signature registers that keep track of the program’s position within the control
flow graph.

10.2 Concluding Remarks

This thesis has explored low-level bare-metal software-implemented hardware
fault tolerance techniques for embedded devices and how they can be used
to protect systems against soft errors like single event upsets. In Chapter 1,
defined three research objectives to be achieved in this thesis were defined:

RO1. Evaluate the applicability of state-of-the-art SIHFT techniques on more
industrially applicable case studies;

RO2. Develop new SIHFT techniques that address the limitations discovered
in RO1;

RO3. Investigate how a custom RISC-V extension can be created to support
SIHFT techniques.

RO1: The first research objective was addressed in Chapter 2, where the SOTA
SIHFT techniques were discussed, showing how they can be used to protect
systems against control flow errors and data flow errors. However, this work also
showed that these techniques require a lot of registers to store redundant values,
which can be a problem for embedded systems with limited resources. This is
especially true for DFED and hybrid techniques, which rely on shadow registers
to store redundant register values. Many applications are not able to compile
with the SOTA techniques because of this, rendering them unusable in these
cases. This major limitation in the applicability of SOTA SIHFT techniques
was the main motivation for the development of the techniques in this thesis.

In order to evaluate the effectiveness of the SIHFT techniques developed in
this thesis, a simulation-based and a HIL-based fault injection framework was
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used on several data-driven and I/O-driven case studies. This was detailed
in Chapter 3, which showed how the results of the fault injection campaigns
were classified, bearing in mind that systems protected with different SIHFT
techniques have different fault-spaces.

RO2: To address the register availability issue, Chapter 4 introduced the
DETECTOR technique, which only uses three CPU registers to detect soft
errors. DETECTOR introduces the concept of vulnerable sections as parts of
the program where it must be ensured that the program’s state is correct. At the
start of the program and after each vulnerable section, a checkpoint is introduced.
Before each vulnerable section, a re-execution point is inserted. When the
program reaches a re-execution point, the DETECTOR mechanism stores the
program’s state in a shadow stack in memory and reloads the program’s state
from the last reached checkpoint, which is identified by a unique signature value.
After re-executing the program from that checkpoint, the re-execution point
is reached again, at which point the program’s current state is compared to
the stored state. Differences indicate that a soft error has occurred, triggering
an error handler that can be implemented by the developer of the application.
Fault injection experiments on the data-processing case studies showed that
DETECTOR can reliably detect soft errors, reducing the average silent data
corruption ratio from 54.6% to 5.7% for CFEs and from 49.0% to 4.7% for
DFEs. However, the fault injection campaigns on the I/O-driven case studies
also revealed that DETECTOR can struggle in some cases, even introducing
more vulnerable code to the program.

Since DETECTOR only uses three CPU registers, it can be used on virtually
all applications, making it a viable solution for systems where other DFE
or hybrid techniques fail. DETECTOR does, however, introduce a large
execution time overhead, especially for applications with a vulnerable section
in a hot loop. To address this issue, Chapter 5 introduced two optimizations.
The first optimization, called S-DETECTOR introduces a selective version
of DETECTOR, where only the registers that are most often used to access
memory are protected. This reduces the overhead of the DETECTOR technique,
while still providing a good level of error detection, trading off error detection
capabilities for performance. As expected, the fault injection results show
a reduced error detection ratio compared to DETECTOR, with on average
10.2% of faults resulting in a silent data corruption when using S-DETECTOR,
compared to the 5.7% when using DETECTOR. Meanwhile, the selective
approach of S-DETECTOR reduces the ETO significantly, although the
overhead is still quite high for some case studies.

The second optimization introduced in Chapter 5 is called P-DETECTOR.
P-DETECTOR utilizes parity checking to verify that the two execution cycles
are equal, instead of comparing each register value one by one. This does
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not only decrease the overhead of DETECTOR, but also improves the error
detection capabilities of the technique, detecting more CFEs than DETECTOR,
reducing the SDC ratio of control flow errors to a mere 3.4% on average for
the data-processing case studies. The techniques developed in Chapter 4 and
Chapter 5 show that it is possible to develop SIHFT techniques that do not
require many registers to be reserved, thereby completing RO2.

RO3: Chapter 7 explored the possibilities of using custom RISC-V extensions
to support SIHFT techniques. The idea was to use the extendable nature of
the RISC-V instruction set architecture with its possibility to create custom
extensions to introduce specialized instructions that can be used to implement
SIHFT techniques more efficiently. As a proof-of-concept, this work describes
the Xpdetector extension, which introduces specialized instructions for the
P-DETECTOR technique. This extension introduced four new instructions
that use special-purpose registers to store the parity value, signature value and
register values at the checkpoints. Chapter 7 detailed how this extension fits
within the RISC-V encoding space and how the extension was simulated using
the Imperas instruction set simulator by extending an OVP RV32I model. While
no exact overhead measurements can be measured when using the simulated
model, the estimations show that the P-DETECTOR implementation using
the Xpdetector extension can be implemented very efficiently, reducing the
overhead significantly. This completes the third research objective.

Since SIHFT techniques are implemented in assembly code, implementing
them manually is infeasible. To make SIHFT techniques more accessible to
developers, the M-Group research group developed two GCC compiler plugins
to automatically insert the necessary instructions for several CFED or DFED
techniques on ARM-based systems. Chapter 8 detailed how these two existing
GCC plugins were combined into one easily extendable plugin intended to
support a wide range of SIHFT techniques, as well as multiple ISA families.
This was done by compartmentalizing the plugin into four components that
each have their own responsibility. Techniques can be easily implemented
by implementing the Technique interface in the Techniques component, while
support for ISAs can be added by extending the classes in the Targets component.
This way, a single codebase can compile multiple versions of the SIHFT plugin
for different ISA families.

Finally, Chapter 9 described how the research results of this thesis can be
valorized. More specifically, it described how the GCC SIHFT plugin was
open-sourced so that it can be used by industry to protect their systems against
soft errors. Additionally, the chapter showed how the fault injection tools used
to evaluate the SIHFT techniques can be combined with that GCC plugin to
create a full resilience framework that can be used by industry. In this light, the
M-Group at KU Leuven Bruges can offer a consultancy role to help the industry
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evaluate and improve the resilience of their systems. Four user scenarios were
explored, ranging from a pure vulnerability assessment to a suggestion service
where multiple SIHFT techniques are evaluated on the system to find the best
fit. In a later phase, this solution could be marketed as a SaaS solution where
most of this is automated, thereby also lowering the barrier for companies that
want to explore these solutions.

To conclude, all three research objectives were successfully achieved, contributing
to the research field that creates highly resilient embedded systems. The state-
of-the-art techniques were evaluated, their limitations were identified, and the
DETECTOR, S-DETECTOR, and P-DETECTOR techniques were introduced
to overcome the limited register availibility challenge that was discovered.
Moreover, the introduction of the Xpdetector RISC-V extension demonstrated
the potential for hardware-supported SIHFT techniques, while the development
of a flexible GCC plugin, together with the fault-injection frameworks made
SIHFT techniques more accessible to developers. The valorization plan further
underscores the potential impact of this research, suggesting pathways for the
industry to adopt and integrate these advancements, thereby contributing to
the broader goal of creating more robust and reliable embedded systems.
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A.1 Fault Injection Campaigns on the Data
Processing Case Studies on ARMv7-M

Table A.1: Details of the fault injection campaigns on the data processing case
studies on the ARMv7-M ISA.

instruction
count

execution
time (ms)

injected
CFEs

injected
DFEs

BC

P-DETECTOR 61 39 2239 31 583
S-DETECTOR 38 38 1912 31 132

DETECTOR 67 39 1912 31 424
RACFED 41 19 2442 -

CFCSS 35 16 1869 -
FDSC 19 11 - 5869

SWIFT 45 18 - 8256
unprotected 9 7 517 11 712

BS

P-DETECTOR 96 4015 101 330 117 440
S-DETECTOR 68 2567 100 740 113 760

DETECTOR 94 4158 100 870 116 160
RACFED 73 743 6025 -

CFCSS 63 574 5730 -
FDSC 51 938 - 12 960

SWIFT 93 638 - 15 200
unprotected 21 335 137 068 103 680

CRC

P-DETECTOR 71 29 100 590 161 161
S-DETECTOR 46 31 100 410 107 840

DETECTOR 75 31 100 410 109 440
RACFED 63 25 5440 -

CFCSS 45 21 5310 -
FDSC 48 33 - 12 320

SWIFT 56 25 - 14 560
unprotected 19 14 90 115 102 880

CU

P-DETECTOR 1768 25 45 733 418 144
S-DETECTOR 1261 25 32 601 418 023

DETECTOR 1279 26 32 663 418 144
RACFED 576 20 8891 -

CFCSS 385 20 5523 -
unprotected 290 20 5119 42 336

The table continues on the next page.
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Table A.1 (cont.): Details of the fault injection campaigns on the data processing
case studies on the ARMv7-M ISA.

instruction
count

execution
time (ms)

injected
CFEs

injected
DFEs

DIJ

P-DETECTOR 314 10 223 103 374 176 000
S-DETECTOR 247 9989 102 292 174 340

DETECTOR 256 10 462 102 292 175 840
RACFED 186 10 651 8555 -

CFCSS 138 9749 7547 -
unprotected 66 4210 100 590 109 056

FFT

P-DETECTOR 1763 5172 147 394 615 616
S-DETECTOR 1285 4921 132 588 613 223

DETECTOR 1300 5915 132 588 614 304
RACFED 633 1984 16 722 -

CFCSS 435 1994 12 552 -
unprotected 288 1856 105 735 161 760

MM

P-DETECTOR 216 126 102 535 129 920
S-DETECTOR 159 108 101 705 127 040

DETECTOR 186 142 101 813 131 840
RACFED 119 27 6950 -

CFCSS 111 22 6545 -
FDSC 189 46 - 45 920

SWIFT 131 32 - 51 360
unprotected 45 12 100 325 108 800

QS

P-DETECTOR 186 175 104 525 157 984
S-DETECTOR 141 157 103 328 149 792

DETECTOR 171 193 103 328 157 696
RACFED 184 85 8794 -

CFCSS 160 76 8512 -
FDSC 256 114 - 66 912

SWIFT 193 112 - 77 216
unprotected 59 30 101 097 116 768
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Figure A.1: The results of the single-bit CFE fault injection campaigns on the
data-processing case studies protected with CFCSS, RACFED, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.
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Table A.2: The average results of the single-bit CFE fault injection campaigns on
the data-processing case studies protected with CFCSS, RACFED, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.

SWD HWD NEF SDC
P-DETECTOR 76.5% 1.0% 19.1% 3.4%
S-DETECTOR 57.5% 0.2% 32.1% 10.2%

DETECTOR 69.6% 2.1% 22.7% 5.7%
RACFED 79.7% 5.4% 12.4% 2.5%

CFCSS 46.2% 2.6% 39.3% 12.0%
unprotected - 1.5% 43.9% 54.6%
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Figure A.2: The results of the single-bit DFE fault injection campaigns on
the data-processing case studies protected with SWIFT, FDSC, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.
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Table A.3: The average results of the single-bit DFE fault injection campaigns
on the data-processing case studies protected with SWIFT, FDSC, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.

SWD HWD NEF SDC
P-DETECTOR1 43.5% 1.0% 50.8% 4.6%
S-DETECTOR1 19.1% 0.0% 71.7% 9.1%

DETECTOR1 47.1% 0.9% 47.3% 4.7%
FDSC1 48.3% 1.0% 42.2% 8.5%

SWIFT1 60.2% 1.2% 35.1% 3.4%
unprotected1 - 0.7% 50.4% 49.0%

P-DETECTOR2 37.9% 1.3% 56.2% 4.7%
S-DETECTOR2 19.5% 0.0% 73.1% 7.4%

DETECTOR2 41.8% 1.0% 52.5% 4.7%
unprotected2 - 2.2% 59.2% 38.7%

1Results for case studies BC, BS, CRC, MM, and QS.
2Results for case studies BC, BS, CRC, CU, DIJ, FFT, MM, and QS.
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A.2 Fault Injection Campaigns on the I/O-Driven
Case Studies on ARMv7-M

Table A.4: Details of the fault injection campaigns on the I/O-driven case
studies on the ARMv7-M ISA.

instruction
count

execution
time (ms)

injected
CFEs

injected
DFEs

Distr

P-DETECTOR 2432 8333 8401 24 000
S-DETECTOR 1737 8352 5613 24 000

DETECTOR 1885 8351 6308 24 000
RACFED 1478 8344 5176 -

CFCSS 1127 8334 4077 -
unprotected 592 8342 2291 13 398

Test

P-DETECTOR 1893 9216 7521 18 000
S-DETECTOR 1358 9264 5664 18 000

DETECTOR 1443 9218 5970 18 000
RACFED 1098 9229 4701 -

CFCSS 848 9228 3257 -
unprotected 452 9194 2026 11 040

Sort

P-DETECTOR 1595 6705 5730 12 000
S-DETECTOR 1176 6883 7906 12 000

DETECTOR 1250 6752 4597 12 000
RACFED 1012 6951 3952 -

CFCSS 775 6771 2989 -
unprotected 405 7049 1724 8720
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Figure A.3: The results of the single-bit CFE fault injection campaigns on
the I/O-driven case studies protected with CFCSS, SWIFT, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.
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Figure A.4: The results of the single-bit DFE fault injection campaigns on
the I/O-driven case studies protected with DETECTOR, S-DETECTOR, and
P-DETECTOR on the ARMv7-M ISA.
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Table A.5: The average results of the single-bit CFE fault injection campaigns
on the I/O-driven case studies protected with CFCSS, RACFED, DETECTOR,
S-DETECTOR, and P-DETECTOR on the ARMv7-M ISA.

SWD HWD NEF SDC
P-DETECTOR 47.4% 30.1% 10.9% 11.5%
S-DETECTOR 34.2% 16.1% 17.3% 32.5%

DETECTOR 38.5% 13.6% 15.5% 32.3%
RACFED 70.3% 22.2% 6.2% 1.3%

CFCSS 62.7% 20.9% 13.4% 2.9%
unprotected - 45.2% 28.7% 26.1%

Table A.6: The average results of the single-bit DFE fault injection campaigns
on the I/O-driven case studies protected with DETECTOR, S-DETECTOR,
and P-DETECTOR on the ARMv7-M ISA.

SWD HWD NEF SDC
P-DETECTOR 27.2% 6.4% 60.6% 5.9%
S-DETECTOR 10.8% 10.4% 72.4% 6.4%

DETECTOR 16.7% 9.0% 68.3% 6.0%
unprotected - 21.6% 67.7% 10.9%
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A.3 Fault Injection Campaigns on RISC-V

Table A.7: Details of the fault injection campaigns on the BC, BS, CRC, MM,
and QS case studies on the RV32I and RV32IXpdetector ISAs.

inst.
count

estimated
instruction

cycles

injected
CFEs

injected
DFEs

BC
Xpdetector 16 83 + 7* 1618 7040

P-DETECTOR 113 331 2258 4000
unprotected 9 39 655 3424

BS
Xpdetector 29 716 056 + 7* 10 493 11 904

P-DETECTOR 135 716 304 5761 7488
unprotected 19 358 025 5249 6816

CRC
Xpdetector 24 34 023 + 7* 10 384 12 800

P-DETECTOR 57 34 271 5581 7680
unprotected 19 17 009 5196 7200

MM
Xpdetector 86 163 166 + 14 007* 11 460 16 480

P-DETECTOR 218 661 414 7305 15 680
unprotected 66 136 935 5990 10 880

QS
Xpdetector 81 44 278 + 1778* 12 064 19 808

P-DETECTOR 382 107 522 7778 16 128
unprotected 59 21 536 6520 14 912

*Additional instruction cycles in a realistic scenario.
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Figure A.5: The results of the single-bit CFE fault injection campaigns on the
BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR on the
RV32I and RV32IXpdetector ISAs.
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Figure A.6: The results of the single-bit DFE fault injection campaigns on the
BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR on the
RV32I and RV32IXpdetector ISAs.
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Table A.8: The average results of the single-bit CFE fault injection campaigns
on the BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR
on the RV32I and RV32IXpdetector ISAs.

SWD NEF SDC
P-DETECTOR (RV32IXpdetector) 63.7% 27.7% 8.5%

P-DETECTOR (RV32I) 64.8% 29.3% 5.9%
unprotected - 46.0% 54.0%

Table A.9: The average results of the single-bit DFE fault injection campaigns
on the BC, BS, CRC, MM, and QS case studies protected with P-DETECTOR
on the RV32I and RV32IXpdetector ISAs.

SWD NEF SDC
P-DETECTOR (RV32IXpdetector) 76.3% 21.3% 2.4%

P-DETECTOR (RV32I) 80.7% 17.4% 1.8%
unprotected - 39.5% 60.5%
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B.1 DETECTOR

Table B.1: The added instruction cycles for each added instruction cycle per
vulnerable section for DETECTOR using the ARMv7-M Cortex-M3 processor.

First execution Second execution
instruction cycles instruction cycles
1: cmp G, #0 1 12: cmp G, #0 1
2: beq label 1 13: beq label P + 1
3: cmp G, #<sig2> 0 or 1 14: bl compare P + 1
4: mov G, sp 1 compare subroutine 4N + P − 1
5: stmdb S2!, {...} 1 + N 15: mov lr, G 1
6: ldmia S1!, {...} 1 + N vulnerable section
7: mov sp, G 1 16: mov G, sp 1
8: mov G, #0 1 17: stmdb S1!, {...} 1 + N
9: blo source1

}
cskip

18: mov G, #<sigX> 1
10: beq source2
11: bhi source3 P + 1

Table B.1 shows a stack trace of the instructions added by DETECTOR for a
vulnerable section executed on the Cortex-M3 processor, along with the number
of cycles each dynamic instruction takes. The Technical Reference Manual of the
Cortex-M3 [68] specifies that all compare and move instructions are executed
in one cycle. Branch instructions take P + 1 cycles if the branch is taken or
one cycle if the branch is not taken. In this context, P is the number of cycles
required for a pipeline refill. This ranges from 1 to 3 depending on the alignment
and width of the target instruction, and whether the processor manages to
speculate the address early. Store multiple and load multiple instructions take
1 + N cycles, where N is the number of registers to be stored or loaded.

The table indicates that lines 9 and 10 take cskip cycles. This cskip value
represents the number of branch instructions to source checkpoints that are
evaluated but not taken during the first execution cycle. If a vulnerable section
only has one source checkpoint, cskip equals zero since the three conditional
branch instructions at lines 9 through 11 are replaced by a single unconditional
branch instruction (b <checkpoint>). Additionally, the compare instruction at
line 3 is not added in this case (hence, the 0 cycles indicated in the table). If
there is more than one source checkpoint, the value of cskip can vary between 0
and 2, depending on if the first, second, or third branch is taken.

Table B.2 shows the added instruction cycles for the compare subroutine. This
subroutine is called by the bl compare instruction at line 13 of the vulnerable
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Table B.2: The added instruction cycles for the compare subroutine of
DETECTOR using the ARMv7-M Cortex-M3 processor.

instruction cycles
1: ldr G, [S2], #4 2

1
1

. . .
2
1
1


4 · (N − 1)

2: cmp r0, G
3: bne errorHandler
...
21: ldr G, [S2], #4
32: cmp r0, G
33: bne errorHandler
34: ldr G, [S2], #4 2
35: bx lr P + 1

section, therefore adding 4N + P − 1 cycles to the total cycle count. Therefore,
the total added instruction cycles per vulnerable section for DETECTOR using
the ARMv7-M Cortex-M3 processor is given by Equation (B.1).

I+
V Sdetector

=
{

7N + 4P + 14, if sources = 1
7N + 4P + cskip + 15, otherwise

(B.1)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0 | cskip ≤ 2}

This equation can be simplified by defining C, which varies between 0 and 3:

I+
V Sdetector

= 7N + 4P + C + 14 (B.2)

where {N, P ∈ N | P ≤ 3 | C ∈ N0 | C ≤ 3}

As discussed in Chapter 8, there are two implementation variants of the
DETECTOR algorithm, depending on the supported instructions of the ISA
and the structure of the CFG of the program. Table B.1 and Equations (B.1)
and (B.2) assume that the first version (where separate compare and conditional
branch instructions are inserted) is used. When using the second variant, i.e.,
the variant where part of the re-execution code is placed after the vulnerable
section, the same approach can be used to calculate the added instruction cycles
per vulnerable section, resulting in Equation (B.3).

I+
V Sdetector

=
{

7N + 5P + 14, if sources = 1
7N + 5P + 2cskip + 15, otherwise

(B.3)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0}
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B.2 S-DETECTOR

Table B.3: The added instruction cycles for each added instruction cycle per
vulnerable section for S-DETECTOR using the ARMv7-M Cortex-M3 processor.

First execution Second execution
instruction cycles instruction cycles
1: cmp G, #0 1 12: cmp G, #0 1
2: beq label 1 13: beq label P + 1
3: cmp G, #<sig2> 0 or 1 14: bl compare P + 1
4: mov G, sp 1 compare subroutine 4M + P − 1
5: stmdb S2!, {...} 1 + M 15: mov lr, G 1
6: ldmia S1!, {...} 1 + N vulnerable section
7: mov sp, G 1 16: mov G, sp 1
8: mov G, #0 1 17: stmdb S1!, {...} 1 + N
9: blo source1

}
cskip

18: mov G, #<sigX> 1
10: beq source2
11: bhi source3 P + 1

Similarly to Table B.1, Table B.3 shows how many instruction cycles are added
for each dynamic instruction added by S-DETECTOR per vulnerable section.
Since S-DETECTOR only protects a subset of the registers, the number of
registers pushed and popped onto and from the second shadow stack S2 is
denoted by M . This results in Equation (B.4).

I+
V Ss−detector

=
{

5M + 2N + 4P + 14, if sources = 1
5M + 2N + 4P + cskip + 15, otherwise

(B.4)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0 | cskip ≤ 2}

This equation can again be simplified, resulting in Equation (B.5).

I+
V Ss−detector

= 5M + 2N + 4P + C + 14 (B.5)

where {M, N, P ∈ N | P ≤ 3 | M ≤ N | C ∈ N0 | C ≤ 3}
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Table B.4: The minimum and maximum added instruction cycles per vulnerable
section added by S-DETECTOR on a Cortex-M3 processor (N = 12).

protected registers (M) minimum cycles maximum cycles
1 47 58
2 52 63
3 57 68
4 62 73
5 67 78
6 72 83
7 77 88
8 82 93
9 87 98
10 92 103
11 97 108
12 102 113

Table B.4 shows how many instruction cycles are added for every number of
protected registers M when executing on the Cortex-M3 processor (M = 12).

Using the alternative implementation from Chapter 8, the added instruction
cycles per vulnerable section for S-DETECTOR can be calculated by Equa-
tion (B.6).

I+
V Ss−detector

=
{

5M + 2N + 5P + 14, if sources = 1
5M + 2N + 5P + 2cskip + 15, otherwise

(B.6)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0}
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B.3 P-DETECTOR

Table B.5: The added instruction cycles for each added instruction cycle per
vulnerable section for P-DETECTOR using the ARMv7-M Cortex-M3 processor.

First execution Second execution
instruction cycles instruction cycles
1: cmp G, #0 1 14: cmp G, #0 1
2: beq label 1 15: beq label P + 1
3: cmp G, #<sig2> 0 or 1 16: mov G, sp 1
4: mov G, sp 1 17: eor P, P, G 1
5: eor P, P, G 1 18: mov G, lr 1
6: mov G, lr 1 19: bl calculateParity P + 1
7: bl calculateParity P + 1 calculateParity subroutine N + P

calculateParity subroutine N + P 20: mov lr, G 1
8: ldmia S1!, {...} N + 1 21: cmp P, #0 1
9: mov sp, G 1 22: bne errorHandler 1
10: mov G, #0 1 vulnerable section
11: blo source1

}
cskip

23: mov G, sp 1
12: beq source2 24: stmdb S1!, {...} N + 1
13: bhi source3 P + 1 25: mov G, #<sigX> 1

Table B.5 shows a stack trace of the instructions added by P-DETECTOR for a
vulnerable section executed on the Cortex-M3 processor, along with the number
of cycles needed for each instruction. The calculateParity subroutine, called
at lines 7 and 19 takes N + P cycles, as derived from Table B.6.

Table B.6: The added instruction cycles for the calculateParity subroutine of
P-DETECTOR using the ARMv7-M Cortex-M3 processor.

instruction cycles
1: eor P, P, r0 1

. . .
1

 N − 1...
11: eor P, P, r12
12: bx lr P + 1

Therefore, the formula to calculate the added instruction cycles per vulnerable
section for P-DETECTOR using the ARMv7-M Cortex-M3 processor is given
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by Equation (B.7).

I+
V Sp−detector

=
{

4N + 6P + 22 if sources = 1
4N + 6P + cskip + 23 otherwise

(B.7)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0 | cskip ≤ 2}

Just like before, Equation (B.7) can be simplified by using C ≤ 3:

I+
V Sp−detector

= 4N + 6P + C + 22 (B.8)

where {N, P ∈ N | P ≤ 3 | C ∈ N0 | C ≤ 3}

A similar method can be used for the alternative implementation from Chapter 8,
resulting in Equation (B.9).

I+
V Sp−detector

=
{

4N + 7P + 22, if sources = 1
4N + 7P + 2cskip + 23, otherwise

(B.9)

where {N, P ∈ N | P ≤ 3 | cskip ∈ N0}
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B.4 P-DETECTOR Using the Xpdetector RISC-V
Extension

Table B.7: The added instruction cycles for each added instruction cycle per
vulnerable section for P-DETECTOR using the Xpdetector RISC-V extension.

First execution Second execution
instruction cycles instruction cycles
1: par IP AR 4: par IP AR

2: rei <sig1> source1
}

cskip
5: rei <sig2> source2

 sources. . . . . .
3: rei <sigM> sourceM IREI 6: rei <sigN> sourceN

7: pzal errorHandler 1
vulnerable section
8: cpi <sigX> ICP I

Table B.7 shows how many instruction cycles are added for each added dynamic
instruction per vulnerable section. In this table, it is assumed that all conditional
instructions for which the condition is not met (lines 2, 5, 6, and 7) have an
execution cycle of 1. The other par, rei, pzal, and cpi instructions have
execution cycles of IP AR, IREI , 1, and ICP I , respectively.

After the first execution cycle, the signature of the signature register sr
determines which rei instruction will be executed. The number of rei

instructions that are evaluated, but not executed during the first execution
cycle is represented by cskip (line 2). The value of cskip can vary between 0
and sources− 1 as, during an error-free execution, at least one rei instruction
will be executed. After the second execution cycle, all C rei instructions are
traversed, but not executed, since the signature register sr will be zero. This
results in the Equation (B.10).

I+
V SXpdetector

= 2IP AR + IREI + ICP I + sources + cskip + 1 (B.10)

where {IP AR, IREI , ICP I , sources ∈ N | cskip ∈ N0 | cskip < sources}

This formula can be simplified by defining the variable C = sources + cskip,
resulting in Equation (B.11).

I+
V SXpdetector

= 2IP AR + IREI + ICP I + C + 1 (B.11)

where {IP AR, IREI , ICP I , C ∈ N}
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Appendix D

Assembly Reference

This is a summary of all the assembly instructions mentioned in this thesis.
The instructions are grouped by architecture and listed in alphabetical order.

D.1 ARM Assembly

Optional Suffixes and Operands

{addr_mode} Addressing mode. Can be any one of:

ia increment address after each transfer (default)
ib increment address before each transfer
da decrement address after each transfer
db decrement address before each transfer

{cond} Condition code. Defines the conditions that must be met for the
instruction to be executed (based on the condition flag). Can be any one
of:

eq equal (Z set)
ne not equal (Z clear)
cc/lo unsigned lower (C clear)
hi unsigned higher (C set and Z clear)
cs/hs unsigned higher or same (C set)
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{Rd} Destination register. If not specified, the result is stored in the first
operand register.

{s} If suffixed with s, update the condition flags on the result of the operation.

{type} Type of load or store operation. Can be any one of:

b unsigned byte
sb signed byte
h unsigned half-word
sh signed half-word

or can be omitted for a word operation.

Instructions

add{s} {Rd}, Rn, Operand2 Add without carry
Add the values in Rn and Operand2.

and{s} {Rd}, Rn, Operand2 Logical AND
Perform a bitwise AND operation on the values Rn and Operand2.

b{cond} Dest Branch
Branch to the destination address Dest.

bl Dest Branch with Link
Branch to the destination address Dest and copy the address of the next
instruction into the link register lr.

bx Rm Branch (and exchange instruction set)
Branch to address contained in register Rm and (exchanges the instruction
set, if required).

cbz Rn, Dest Compare and Branch on Zero
Compare register Rn with zero. If equal, branch to destination address
Dest.

cmp Rn, Operand2 Compare
Compare the value in register Rn with Operand2 and update the condition
flags on the result.

eor Rd, Rn, Operand2 Logical Exclusive Or
Perform a bitwise exclusive or operation on the values in Rn and Operand2.

itt cond If-Then
Apply the cond condition to the next instructions.
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ldm{addr_mode} Rn{!}, regList Load Multiple Registers
Load the values at the address in register Rn into the registers in regList.
If ! is added, write the final address back into Rn.

ldr{type}{cond} Rt, [Rn, {#offset}]{!} Load with (pre-indexed) immedi-
ate offset
Load the value located #offset bytes above the address in register Rn
into register Rt. If ! is added, increment Rn by #offset.

ldr{type}{cond} Rt, [Rn] #offset Load with post-indexed immediate offset
Load the value located in the address in register Rn into register Rt and
increment Rn by #offset.

mov{s} Rd, Operand2 Move
Copy the value of Operand2 to register Rd.

pop regList Pop registers off a full descending stack
Synonym for ldmia sp! regList.

push regList Push registers onto a full descending stack
Synonym for stmdb sp!, reglist.

stm{addr_mode} Rn{!}, regList Store Multiple Registers
Store the values in the registers in regList at the address in register Rn.
If ! is added, write the final address back into Rn.

str{type}{cond} Rt, [Rn, {#offset}]{!} Store with (pre-indexed) immedi-
ate offset
Store the value in register Rt at the address #offset bytes above the
address in register Rn. If ! is added, increment Rn by #offset.

str{type}{cond} Rt, [Rn] #offset Store with post-indexed immediate offset
Store the value in register Rt in the address in register Rn and increment
Rn by #offset.

sub{s} {Rd}, Rn, Operand2 Subtract without carry
Subtracts the value of Operand2 from register Rn.

Source: [97]
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D.2 RISC-V Assembly

Instructions

add rd, rs1, rs2 Add
Add the values in registers rs1 and rs2 and store the result in register rd.

addi rd, rs1, imm Add Immediate
Add the value imm to the value in register rs1 and store the result in
register rd.

beq, rs1, rs2, dest Branch if Equal
Branch to dest if the values in registers rs1 and rs2 are equal.

bge, rs1, rs2, dest Branch if Greater or Equal
Branch to dest if the value in register rs1 is greater than or equal to the
value in register rs2.

bgeu rs1, rs2, dest Branch if Greater or Equal, Unsigned
Branch to dest if the value in register rs1 is greater than or equal to the
value in register rs2 (unsigned).

jal, rd, dest Jump and Link
Jump to dest and store the address of the next instruction in register rd.

lbu, rd, offset(rs1) Load Byte Unsigned
Load an 8-bit value from the memory address at rs1 + offset, zero-
extend it and store it in register rd.

lui rd, imm Load Upper Immediate
Place the U-immediate value in the top 20 bits of the destination register
rd, filling in the lowest 12 bits with zeros.

sb rs2, offset(rs1) Store Byte
Store the 8-bit value from the low bits of register rs2 to the memory
address at rs1 + offset.

sw rs2, offset(rs1) Store Word
Store the 32-bit value from the low bits of register rs2 to the memory
address at rs1 + offset.

xor rd, rs1, rs2 Exclusive OR
Perform a bitwise exclusive OR operation on the values in registers rs1
and rs2 and store the result in register rd.
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xori rd, rs1, imm Exclusive OR Immediate
Perform a bitwise exclusive OR operation on the value in register rs1 and
the immediate value imm and store the result in register rd.

Pseudo-instructions

bleu rs, rt, dest Branch if Lower or Equal, Unsigned
bgeu rt, rs, dest

blez rs, dest Branch if Lower or Equal to Zero
bge zero, rs, dest

li, rd, imm Load Immediate
Place the immediate imm, into register rd. This instruction is realized
through myriad sequences: the compiler can generate different instruction
sequences to recreate this behavior.

j, dest Jump
jal zero, dest.

jal, dest Jump and Link (without rd)
jal ra, dest.

mv, rd, rs Move
addi rd, rs, 0.

Source: [98, 86]
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